

#### ENVIRONMENTAL PROTECTION DIVISION

July 14, 2020

#### Richard E. Dunn, Director

#### **Watershed Protection Branch**

2 Martin Luther King, Jr. Drive Suite 1152, East Tower Atlanta, Georgia 30334 404-463-1511

RE: Draft Permit

Blairsville Water Pollution Control Plant NPDES Permit No. GA0033375

Union County, Tennessee River Basin

Dear Mayor Conley:

City of Blairsville Post Office Box 307

Honorable Jim Conley, Mayor

Blairsville, Georgia 30514

The Environmental Protection Division (EPD) has received your application for renewal of the above-referenced permit. We are processing your application and are considering the issuance of a National Pollutant Discharge Elimination System (NPDES) permit in accordance with the Georgia Water Quality Control Act and the Federal Clean Water Act.

Before reissuing the permit, we require that you post a public notice for 30 days in a conspicuous location at City Hall and publish this notice for one day in one or more newspapers of general circulation in Union County. When deciding whether to publish in one or more newspapers, please ensure that the notice will be published in all affected jurisdictions. The cost of publishing the public notice is the responsibility of the City. Within ten days of receiving this draft permit, please send a letter to our office stating where and what date the notice was posted and published. The letter should be signed by an authorized representative of the City. At the end of the 30-day public comment period, EPD will make a determination on the reissuance of the NPDES permit.

Enclosed are the draft permit and additional documents. We request that all the documents be reviewed carefully by appropriate personnel. If you have comments or questions, please contact Chris Bruegge of my staff at 404.463.4944 or *chris.bruegge@dnr.ga.gov*.

Sincerely,

Benoit Causse, Manager Municipal Permitting Unit

Wastewater Regulatory Program

BSC\cab

Attachments: Public Notice, Fact Sheet, Draft Permit

cc: Laura Nicholson, EPD Mountain District (<u>laura.nicholson@dnr.ga.gov</u>)
Jody Cook, Blairsville Superintendent (<u>jody cook@blairsville-ga.gov</u>)



#### **SUMMARY PAGE**

Name of Facility: City of Blairsville - Blairsville WPCP

NPDES Permit No.: GA0033375

This is a reissuance of the NPDES permit for the Blairsville WPCP. Up to 0.4 MGD (monthly average) of treated domestic wastewater is discharged to Butternut Creek in the Tennessee River Basin. The permit also includes effluent limitations and monitoring requirement for the expanded flows of 1.0 MGD.

The permit expired on December 31, 2018 and became administratively extended.

The permit was placed on public notice from XXXX to XXXXX.

#### Please Note The Following Changes to the Proposed NPDES Permit From The Existing Permit:

#### Part I.B:

- Added orthophosphate, organic nitrogen, nitrate-nitrite and total Kjeldahl nitrogen monitoring requirements to determine nutrient speciation and to quantify nutrient loadings in the Tennessee River Basin.
- For B.1. Effluent Limits increased flow monitoring from five days/week to seven days/week and decreased total phosphorus monitoring from two days/week to one day/month in accordance with EPD monitoring requirements guidelines.
- For B.2. Effluent Limits increased total phosphorus monitoring from two days/week to three days/week in accordance with EPD monitoring requirements guidelines.
- Added conditional chronic Whole Effluent Toxicity, Priority Pollutant, and stream monitoring for hardness since the facility is receiving leachate.

#### Part I.C:

• Added requirements to develop a Watershed Protection Plan

#### Part IV:

• Removed Approved Sludge Management Plan language.

#### **Standard Conditions and Boilerplate Modifications:**

The permit boilerplate includes modified language or added language consistent with current NPDES permits.

Blairsville WPCP July 2020 NPDES Permit No. GA0033375 Page 1 of 2

# Final Permit Determinations and Public Comments: Final issued permit did not change from the draft permit placed on public notice. Public comments were received during public notice period. Public hearing was held on Final permit includes changes from the draft permit placed on public notice. See attached permit revisions and/or permit fact sheet revisions.

Blairsville WPCP July 2020 NPDES Permit No. GA0033375 Page 2 of 2



#### **PUBLIC NOTICE**

Notice of Application for National Pollutant Discharge Elimination System Permit to Discharge Treated Wastewater Into Waters of the State of Georgia.

The Georgia Environmental Protection Division has received a new NPDES permit application for the reissuance of an existing NPDES permit. Having reviewed such application, the Environmental Protection Division proposes to issue for a maximum term of five years the following permit subject to specific pollutant limitations and special conditions:

City of Blairsville, Post Office Box 307, Blairsville, GA 30514, NPDES Permit No. GA0033375, for the City of Blairsville Water Pollution Control Plant located at 145 Scott Drive, Blairsville, Georgia 30512. Up to 0.4 MGD of treated wastewater is being discharged to the Butternut Creek in the Tennessee River Basin. The draft permit also includes effluent limitations and monitoring requirements for the expanded flow of 1.0 MGD.

Persons wishing to comment upon or object to the proposed determinations are invited to submit same in writing to the EPD address below, or via e-mail at *EPDcomments@dnr.ga.gov*, no later than thirty (30) days after this notification. If you choose to e-mail your comments, please be sure to include the words "NPDES permit reissuance — Blairsville Water Pollution Control Plant — GA0033375 (Union County)" in the subject line to ensure that your comments will be forwarded to the correct staff. All comments received prior to or on that date will be considered in the formulation of final determinations regarding the application. A public hearing may be held where the EPD Director finds a significant degree of public interest in a proposed permit or group of permits. Additional information regarding public hearing procedures is available by writing the Environmental Protection Division.

A fact sheet or copy of the draft permit is available by writing the Environmental Protection Division. A copying charge of 10 cents per page will be assessed. The permit application, draft permit, comments received, and other information are available for review at 2 MLK, Jr. Dr., Suite 1152E, Atlanta, GA 30334, between the hours of 8:00 a.m. and 4:30 p.m., Monday through Friday. For additional information contact: Benoit Causse, Wastewater Regulatory Program, phone (404) 463-1511 or e-mail benoit.causse@dnr.ga.gov.



The Georgia Environmental Protection Division proposes to issue an NPDES permit to the applicant identified below. The draft permit places conditions on the discharge of pollutants from the wastewater treatment plant to waters of the State.

#### **Technical Contact:**

Chris Bruegge, Environmental Engineer *chris.bruegge@dnr.ga.gov* 404-463-4944

#### **Draft permit:**

|             | First issuance                                                 |
|-------------|----------------------------------------------------------------|
|             | Reissuance with no or minor modifications from previous permit |
| $\boxtimes$ | Reissuance with substantial modifications from previous permit |
|             | Modification of existing permit                                |
|             | Requires EPA review                                            |

#### 1. FACILITY INFORMATION

**1.1 NPDES Permit No.:** GA0033375

#### 1.2 Name and Address of Owner/Applicant

City of Blairsville Post Office Box 307 Blairsville, Georgia 30514

#### 1.3 Name and Address of Facility

Blairsville Water Pollution Control Plant (WPCP) 145 Scott Drive Blairsville, Georgia 30512

#### 1.4 Location and Description of the Discharge (as reported by applicant)

| Outfall # | Latitude (°) | Longitude (°) | Receiving Waterbody |
|-----------|--------------|---------------|---------------------|
| 001       | 34.873563    | -83.96901     | Butternut Creek     |

#### 1.5 Permitted Design Capacity

Current Phase: 0.4 MGD Future Phase: 1.0 MGD

#### 1.6 SIC Code and Description

SIC Code 4952 – Sewerage systems: Establishments primarily engaged in the collection and disposal of wastes conducted through a sewer system, including such treatment processes as may be provided.

#### 1.7 Description of the Water Pollution Control Plant

Wastewater treatment:

- B.1. Screening, grit removal, biological treatment (sequencing batch reactor), equalization basin, and chlorination. Treated effluent is then discharged to Butternut Creek.
- B.2. Screening, grit removal, biological treatment (sequencing batch reactor), chemical addition for phosphorus removal and pH/alkalinity control, tertiary filtration, chlorination, and post-aeration. Treated effluent is then discharged to Butternut Creek.

Solids processing:

Sludge will be aerobically digested, dewatered and sent to Santek Environmental - Murray Co. Landfill for disposal.

#### 1.8 Type of Wastewater Discharge

| $\boxtimes$ | Process wastewater  | Stormwater          |
|-------------|---------------------|---------------------|
| $\boxtimes$ | Domestic wastewater | Combined (Describe) |
|             | Other (Describe)    |                     |

#### 1.9 Characterization of Effluent Discharge (as reported by applicant)

#### Outfall No. 001:

| Effluent Characteristics (as Reported by Applicant) | Maximum<br>Daily<br>Value | Average<br>Daily<br>Value |
|-----------------------------------------------------|---------------------------|---------------------------|
| Flow (MGD)                                          | 0.898                     | 0.290                     |
| Five-Day Biochemical Oxygen Demand (mg/L)           | 33                        | 8                         |
| Total Suspended Solids (mg/L)                       | 32                        | 6                         |
| Fecal Coliform Bacteria (#/100mL)                   | 35                        | 5                         |

Blairsville WPCP NPDES Permit No. GA0033375

#### 2. APPLICABLE REGULATIONS

#### 2.1 State Regulations

Chapter 391-3-6 of the Georgia Rules and Regulations for Water Quality Control

#### 2.2 Federal Regulations

| Source Activity |                                   | Applicable Regulation |
|-----------------|-----------------------------------|-----------------------|
|                 |                                   | 40 CFR 122            |
|                 | Municipal Effluent Discharge      | 40 CFR 125            |
|                 |                                   | 40 CFR 133            |
|                 | N D W D' 1                        | 40 CFR 122            |
| Municipal       | Non-Process Water Discharges      | 40 CFR 125            |
|                 |                                   | 40 CFR 122            |
|                 | Municipal Sludge Use and Disposal | 40 CFR 257            |
|                 |                                   | 40 CFR 501 & 503      |

#### 3. WATER QUALITY STANDARDS & RECEIVING WATERBODY INFORMATION

Section 301(b)(1)(C) of the Clean Water Act (CWA) requires the development of limitations in permits necessary to meet water quality standards. Federal Regulations 40 CFR 122.4(d) require that conditions in NPDES permits ensure compliance with the water quality standards which are composed of use classifications, numeric and or narrative water quality criteria and an anti-degradation policy. The use classification system designates the beneficial uses that each waterbody is expected to achieve, such as drinking water, fishing, or recreation. The numeric and narrative water quality criteria are deemed necessary to support the beneficial use classification for each water body. The antidegradation policy represents an approach to maintain and to protect various levels of water quality and uses.

#### 3.1 Receiving Waterbody Classification and Information – Butternut Creek:

#### Specific Water Quality Criteria for Classified Water Usage [391-3-6-.03(6)]:

Fishing: Propagation of Fish, Shellfish, Game and Other Aquatic Life; secondary contact recreation in and on the water; or for any other use requiring water of a lower quality.

- (i) Dissolved Oxygen: A daily average of 6.0 mg/L and no less than 5.0 mg/L at all times for water designated as trout streams by the Wildlife Resources Division. A daily average of 5.0 mg/L and no less than 4.0 mg/L at all times for waters supporting warm water species of fish.
- (ii) pH: Within the range of 6.0 8.5.
- (iii) Bacteria:

- 1. For the months of May through October, when water contact recreation activities are expected to occur, fecal coliform not to exceed a geometric mean of 200 per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. Should water quality and sanitary studies show fecal coliform levels from non-human sources exceed 200/100 mL (geometric mean) occasionally, then the allowable geometric mean fecal coliform shall not exceed 300 per 100 mL in lakes and reservoirs and 500 per 100 mL in free flowing freshwater streams. For the months of November through April, fecal coliform not to exceed a geometric mean of 1,000 per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours and not to exceed a maximum of 4,000 per 100 mL for any sample. The State does not encourage swimming in these surface waters since a number of factors which are beyond the control of any State regulatory agency contribute to elevated levels of bacteria.
- 2. For waters designated as shellfish growing areas by the Georgia DNR Coastal Resources Division, the requirements will be consistent with those established by the State and Federal agencies responsible for the National Shellfish Sanitation Program. The requirements are found in National Shellfish Sanitation Program Guide for the Control of Molluscan Shellfish, 2007 Revision (or most recent version), Interstate Shellfish Sanitation Conference, U.S. Food and Drug Administration.
- (iv) Temperature: Not to exceed 90°F. At no time is the temperature of the receiving waters to be increased more than 5°F above intake temperature except that in estuarine waters the increase will not be more than 1.5°F. In streams designated as primary trout or smallmouth bass waters by the Wildlife Resources Division, there shall be no elevation of natural stream temperatures. In streams designated as secondary trout waters, there shall be no elevation exceeding 2°F natural stream temperatures.

#### 3.2 Ambient Information

| Outfall ID | 30Q3<br>(cfs) | 7Q10<br>(cfs) | 1Q10<br>(cfs) | Annual<br>Average<br>Flow (cfs) | Hardness<br>(mg<br>CaCO <sub>3</sub> /L) | Upstream Total<br>Suspended Solids<br>(mg/L) |
|------------|---------------|---------------|---------------|---------------------------------|------------------------------------------|----------------------------------------------|
| 001        | 7.4           | 3.9           | 3.6           | 25                              | 14                                       | 10 (1)                                       |

<sup>(1)</sup> Not available. A conservative value of 10 mg/L will be used for the reasonable potential analysis calculations.

#### 3.3 Georgia 305(b)/303(d) List Documents



Butternut Creek is listed on the 2018 305(b)/303(d) list as not supporting its designated use (fishing) but TMDLs have been completed for the impacted parameters (fecal coliform and biota).

#### 3.4 Total Maximum Daily Loads (TMDLs)

In 2004, the Georgia Environmental Protection Division (EPD) completed a Total Maximum Daily Load (TMDL) evaluation for Eight Stream Segments in the Tennessee River Basin for sediment. The TMDL allocated the Blairsville WPCP a total suspended solids (TSS) load of 100 lbs/day based on a 0.4-MGD design flow and a TSS effluent concentration of 30 mg/L at that time. The TMDL also allowed for TSS loading to increase proportionally to flow as facilities expand. The TSS effluent limitation has been decreased to 20 mg/L based on facility design at the expanded flow of 1.0 MGD. The proposed TSS limits in the draft permit are in accordance with the 2004 TMDL requirements.

A TMDL evaluation for 19 stream segments in the Tennessee River Basin for fecal coliform was completed in January 2004. The TMDL recommended that all municipal treatment facilities with the potential for the occurrence of fecal coliform in their discharge will be given end of pipe limits equivalent to the water quality standard of 200 counts/100 ml or less. The fecal coliform bacteria limits in the draft permit are in accordance with the TMDL requirements.

#### 3.5 Wasteload Allocation (WLA)

WLAs for reissuance was issued on August 2, 2018. Refer to *Appendix A* of the Fact Sheet for a copy of the WLAs.

#### 4. EFFLUENT LIMITS AND PERMIT CONDITIONS

#### 4.1 Reasonable Potential Analysis (RP)

Title 40 of the Federal Code of Regulations, 40 CFR 122.44(d) requires delegated States to develop procedures for determining whether a discharge causes, has the reasonable potential to cause, or contributes to an instream excursion above a narrative or numeric criteria within a State water. If such reasonable potential is determined to exist, the NPDES permit must contain pollutant effluent limits and/or effluent limits for whole effluent toxicity. Georgia's Reasonable Potential Procedures are based on Georgia's Rules and Regulations for Water Quality Control (Rules), Chapter 391-3-6-.06(4)(d)5. The chemical specific and biomonitoring data and other pertinent information in EPD's files will be considered in accordance with the review procedures specified in the Rules in the evaluation of a permit application and in the evaluation of the reasonable potential for an effluent to cause an exceedance in the numeric or narrative criteria.

Refer to Section 4.2 for reasonable potential analysis on effluent toxicity.

Refer to Section 4.6 for reasonable potential analysis on toxic and manmade pollutants.

#### **4.2** Whole Effluent Toxicity (WET)

#### *4.2.1. Current Phase (0.4 MGD):*

WET tests are not required for facilities with a permitted design flow less than 1.0 MGD and without an approved pre-treatment program; therefore, no WET test results were submitted with the application.

According to the permit application, the facility is receiving landfill leachate; therefore <u>annual</u> WET testing has been included when the facility receives leachate in the calendar year.

EPD will evaluate the WET tests submitted to determine whether toxicity has been demonstrated. If the test results indicate effluent toxicity or if the tests are invalid, the permittee may be required to perform additional WET tests in accordance with Part I.C.5 of the permit and/or the permit may be modified to include a chronic WET limit.

#### 4.2.2. Future Phase (1.0 MGD):

The permittee must conduct one WET test for <u>four consecutive quarters</u> during the first year after receiving EPD written authorization to commence operation under Part I.B.2 (1.0 MGD) effluent limitations, with the first test being conducted within 90 days of this authorization. After the first year, conditional <u>annual</u> WET testing has been included when the facility receives leachate in the calendar year.

EPD will evaluate the WET tests submitted to determine whether toxicity has been demonstrated. If the test results indicate effluent toxicity or if the tests are invalid, the permittee may be required to perform additional WET tests in accordance with Part I.C.5 of the permit and/or the permit may be modified to include a chronic WET limit.

#### 4.3 Applicable Water Quality Based Effluent Limitations (WQBELs)

When drafting a National Pollutant Discharge Elimination System (NPDES) permit, a permit writer must consider the impact of the proposed discharge on the quality of the receiving water. Water quality goals for a waterbody are defined by state water quality standards. By analyzing the effect of a discharge on the receiving water, a permit writer could find that technology-based effluent limitations (TBELs) alone will not achieve the applicable water quality standards. In such cases, the Clean Water Act (CWA) and its implementing regulations require development of water quality-based effluent limitations (WQBELs). WQBELs help meet the CWA objective of restoring and maintaining the chemical, physical, and biological integrity of the nation's waters and the goal of water quality that provides for the protection and propagation of fish, shellfish, and wildlife and recreation in and on the water (fishable/swimmable).

WQBELs are designed to protect water quality by ensuring that water quality standards are met in the receiving water and downstream uses are protected. On the basis of the requirements of Title 40 of the *Code of Federal Regulations* (CFR) 125.3(a), additional or more stringent effluent limitations and conditions, such as WQBELs, are imposed when TBELs are not sufficient to protect water quality.

Blairsville WPCP NPDES Permit No. GA0033375 The term *pollutant* is defined in CWA section 502(6) and § 122.2. Pollutants are grouped into three categories under the NPDES program: conventional, toxic, and nonconventional. Conventional pollutants are those defined in CWA section 304(a)(4) and § 401.16 (BOD<sub>5</sub>, TSS, fecal coliform, pH, and oil and grease). Toxic (priority) pollutants are those defined in CWA section 307(a)(1) and include 126 metals and manmade organic compounds. Nonconventional pollutants are those that do not fall under either of the above categories (conventional or toxic pollutants) and include parameters such as chlorine, ammonia, nitrogen, phosphorus, chemical oxygen demand (COD), and whole effluent toxicity (WET).

#### 4.4 Conventional Pollutants

#### 4.4.1. Current Phase (0.4 MGD):

| Pollutants of Concern                                     | Basis                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pН                                                        | The instream wastewater concentration (IWC) is 14%. When the IWC is less than 50%, there is no reasonable potential to cause or contribute to violation of the instream Georgia Water Quality Standard; therefore, pH limits of 6.0-9.0 SU (daily minimum-daily maximum) were included in the draft permit.                                                   |
| Five-Day Biochemical Oxygen<br>Demand (BOD <sub>5</sub> ) | According to the steady-state dissolved oxygen Georgia DOSAG model, a monthly average BOD <sub>5</sub> limit of 30 mg/L, when combined with the ammonia limit (refer to Section 4.5 below), is protective of the instream Water Quality Standard for dissolved oxygen described in Section 3.1 above. Refer to the WLA in <i>Appendix A</i> for model inputs. |
| Total Suspended Solids (TSS)                              | The monthly average TSS limit of 30 mg/L is in accordance with technology-based effluent limitations for POTWs (i.e., secondary standards) and in accordance with 2004 TMDL requirements for sediments.                                                                                                                                                       |
| Fecal Coliform Bacteria (FCB)                             | The monthly average FCB limit of 200 #/100mL is in accordance with the TMDL requirements in Section 3.4 above.                                                                                                                                                                                                                                                |

## 4.4.2. Future Phase (1.0 MGD):

| Pollutants of Concern                                  | Basis                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                                                     | The instream wastewater concentration (IWC) is 28%. When the IWC is less than 50%, there is no reasonable potential to cause or contribute to violation of the instream Georgia Water Quality Standard; therefore, pH limits of 6.0-9.0 SU (daily minimum-daily maximum) were included in the draft permit.                                                   |
| Five-Day Biochemical Oxygen Demand (BOD <sub>5</sub> ) | According to the steady-state dissolved oxygen Georgia DOSAG model, a monthly average BOD <sub>5</sub> limit of 11 mg/L, when combined with the ammonia limit (refer to Section 4.5 below), is protective of the instream Water Quality Standard for dissolved oxygen described in Section 3.1 above. Refer to the WLA in <i>Appendix A</i> for model inputs. |
| Total Suspended Solids (TSS)                           | The monthly average TSS limit of 20 mg/L has been maintained in the draft permit. The expanded facility has been designed to meet this technology-based limit. The proposed limit is also in accordance with the 2004 TMDL for sediments.                                                                                                                     |
| Fecal Coliform Bacteria (FCB)                          | The monthly average FCB limit of 200 #/100mL is in accordance with the TMDL requirements in Section 3.4 above.                                                                                                                                                                                                                                                |

## 4.5 Nonconventional Pollutants

## 4.5.1. Current Phase (0.4 MGD):

| Pollutants of Concern                                                                  | Basis                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Residual Chlorine (TRC)                                                          | Chlorine is used for disinfection. A daily maximum TRC limit of 0.08 mg/L has been determined using the US EPA's chronic TRC criterion of 11 $\mu$ g/L in the receiving stream after dilution. Refer to Section 4.7.3 below for calculations.                                                                         |
| Dissolved Oxygen (DO)                                                                  | According to the steady-state dissolved oxygen Georgia DOSAG model, a minimum effluent DO of 2.0 mg/L is protective of the instream Water Quality Standard for dissolved oxygen described in Section 3.1 above.                                                                                                       |
| Total Phosphorus (TP)                                                                  | Total phosphorus monitoring has been included in the draft permit in accordance with EPD's <i>Strategy for Addressing Phosphorus in NPDES Permitting</i> , 2011.                                                                                                                                                      |
| Orthophosphate, Total Kjeldahl<br>Nitrogen (TKN), Organic<br>Nitrogen, Nitrate-Nitrite | Orthophosphate, TKN, organic nitrogen, and nitrate-nitrite monitoring has been included in the draft permit. The data will be used to determine nutrient speciation and to quantify nutrient loadings in the Tennessee River Basin.                                                                                   |
| Ammonia (NH <sub>3</sub> )                                                             | According to the steady-state dissolved oxygen Georgia DOSAG model, a monthly average ammonia limit of 10 mg/L, when combined with the monthly average BOD <sub>5</sub> limit (Refer to Section 4.4 above), is protective of the instream Water Quality Standard for dissolved oxygen described in Section 3.1 above. |
|                                                                                        | A monthly average ammonia limit of 10 mg/L is also in accordance with EPD's <i>NPDES Permitting Strategy for Addressing Ammonia Toxicity</i> , 2017. Refer to <i>Appendix B</i> for calculations.                                                                                                                     |

## 4.5.2. Future Phase (1.0 MGD):

| Pollutants of Concern                                                                  | Basis                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Residual Chlorine (TRC)                                                          | Chlorine is used for disinfection. A daily maximum TRC limit of 0.08 mg/L has been determined using the US EPA's chronic TRC criterion of 11 $\mu$ g/L in the receiving stream after dilution. Refer to Section 4.7.3 below for calculations.                                                                          |
| Dissolved Oxygen (DO)                                                                  | According to the steady-state dissolved oxygen Georgia DOSAG model, a minimum effluent DO of 5.0 mg/L is protective of the instream Water Quality Standard for dissolved oxygen described in Section 3.1 above.                                                                                                        |
| Total Phosphorus (TP)                                                                  | A monthly average limit of 1.0 mg/L is in accordance with EPD's <i>Strategy for Addressing Phosphorus in NPDES Permitting</i> , 2011.                                                                                                                                                                                  |
| Orthophosphate, Total Kjeldahl<br>Nitrogen (TKN), Organic<br>Nitrogen, Nitrate-Nitrite | Orthophosphate, TKN, organic nitrogen, and nitrate-nitrite monitoring has been included in the draft permit. The data will be used to determine nutrient speciation and to quantify nutrient loadings in the Tennessee River Basin.                                                                                    |
| Ammonia (NH <sub>3</sub> )                                                             | According to the steady-state dissolved oxygen Georgia DOSAG model, a monthly average ammonia limit of 2.0 mg/L, when combined with the monthly average BOD <sub>5</sub> limit (Refer to Section 4.4 above), is protective of the instream Water Quality Standard for dissolved oxygen described in Section 3.1 above. |
|                                                                                        | A monthly average ammonia limit of 2.0 mg/L is also in accordance with EPD's <i>NPDES Permitting Strategy for Addressing Ammonia Toxicity</i> , 2017. Refer to <i>Appendix B</i> for calculations.                                                                                                                     |

#### 4.6 Toxics & Manmade Organic Compounds

#### 4.6.1. Current Phase (0.4 MGD):

Expanded effluent testing data in EPA Form 3510-2A is not required for facilities with a permitted design flow less than 1.0 MGD and without an approved pre-treatment program; therefore, no test results were submitted with the application.

According to the permit application, the facility is receiving landfill leachate; therefore, conditional <u>annual</u> scans of priority pollutants has been included when the facility receives leachate during the calendar year. Total recoverable mercury must be sampled and analyzed using EPA Method 1631E.

If substances are measured at levels of concern, then the permittee may be required to perform additional priority pollutant analyses in accordance with Part I.C.5 or the permit may be modified to include effluent limitations for priority pollutants.

#### 4.6.2. Future Phase (1.0 MGD):

The permittee must conduct one scan of the priority pollutants for three consecutive quarters after receiving EPD written authorization to commence operation under Part I.B.2 effluent limitations (1.0 MGD), with the first scan conducted within 90 days of the authorization. The priority pollutant scans must represent seasonal variation. After the first year, conditional annual scans of priority pollutants have been included when the facility receives leachate during the calendar year.

If substances are measured at levels of concern, then the permittee may be required to perform additional priority pollutant analyses in accordance with Part I.C.5 or the permit may be modified to include effluent limitations for priority pollutants.

Blairsville WPCP NPDES Permit No. GA0033375

#### 4.7 Calculations for Effluent Limits

#### 4.7.1 Instream Waste Concentration (IWC):

Current Phase (0.4 MGD):

IWC 
$$= \frac{Q_{\text{Effluent}} (\text{ft}^3/\text{sec})}{Q_{\text{Effluent}} (\text{ft}^3/\text{sec}) + 7Q10 (\text{ft}^3/\text{sec})} \%$$
$$= \frac{0.4}{0.4+3.9}$$
$$= 13.7 \%$$

Future Phase (1.0 MGD):

IWC 
$$= \frac{Q_{Effluent} (ft^3/sec)}{Q_{Effluent} (ft^3/sec) + 7Q10 (ft^3/sec)} \%$$
$$= \frac{1.0}{1.0+3.9}$$
$$= 28.4 \%$$

#### 4.7.2 Flow:

#### Current Phase (0.4 MGD):

• Weekly Average Flow:

Q Weekly 
$$= Q_{Monthly} (MGD) \times 1.25$$
$$= 0.4 \times 1.25$$
$$= 0.5 MGD$$

#### Future Phase (1.0 MGD):

• Weekly Average Flow:

Q Weekly 
$$= Q_{Monthly} (MGD) \times 1.25$$
$$= 1.0 \times 1.25$$
$$= 1.25 MGD$$

Q = Flow

C = Concentration

M = Mass

#### 4.7.3 Five-Day Biochemical Oxygen Demand:

#### Current Phase (0.4 MGD):

• Weekly Average Concentration:

[C] Weekly 
$$= [C]_{Monthly} (mg/L) \times 1.5$$
$$= 30 \times 1.5$$
$$= 45 \text{ mg/L}$$

• Monthly Average Mass Loading:

$$M_{\text{Monthly}} = \frac{Q_{\text{Monthly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$

$$= \frac{0.4 \times 30 \times 8.34}{2.2}$$

$$= 45 \text{ kg/day}$$

• Weekly Average Mass Loading:

$$M_{\text{Weekly}} = \frac{Q_{\text{Weekly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$

$$= \frac{0.5 \times 30 \times 8.34}{2.2}$$

$$= 57 \text{ kg/day}$$

#### Future Phase (1.0 MGD):

• Weekly Average Concentration:

[C] Weekly 
$$= [C]_{Monthly} (mg/L) \times 1.5$$
$$= 11 \times 1.5$$
$$= 16.5 \text{ mg/L}$$

• Monthly Average Mass Loading:

M Monthly 
$$= \frac{Q_{\text{Monthly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$
$$= \frac{1.0 \times 11 \times 8.34}{2.2}$$
$$= 42 \text{ kg/day}$$

• Weekly Average Mass Loading:

$$M_{\text{Weekly}} = \frac{Q_{\text{Weekly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$

$$= \frac{1.25 \times 11 \times 8.34}{2.2}$$

$$= 52 \text{ kg/day}$$

#### 4.7.4 Total Suspended Solids:

#### Current Phase (0.4 MGD):

• Weekly Average Concentration:

[C] weekly 
$$= [C]_{Monthly} (mg/L) \times 1.5$$
$$= 30 \times 1.5$$
$$= 45 \text{ mg/L}$$

• Monthly Average Mass Loading:

$$M_{\text{Monthly}} = \frac{Q_{\text{Monthly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$

$$= \frac{0.4 \times 30 \times 8.34}{2.2}$$

$$= 45 \text{ kg/day}$$

• Weekly Average Mass Loading:

$$M_{\text{Weekly}} = \frac{Q_{\text{Weekly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$

$$= \frac{0.5 \times 30 \times 8.34}{2.2}$$

$$= 57 \text{ kg/day}$$

#### Future Phase (1.0 MGD):

• Weekly Average Concentration:

[C] weekly = [C] Monthly (mg/L) x 1.5  
= 
$$20 \times 1.5$$
  
=  $30 \text{ mg/L}$ 

• Monthly Average Mass Loading:

$$M_{\text{Monthly}} = \frac{Q_{\text{Monthly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 (\text{lbs/gal})}{2.2 (\text{lbs/Kg})}$$

$$= \frac{1.0 \times 20 \times 8.34}{2.2}$$

$$= 76 \text{ kg/day}$$

• Weekly Average Mass Loading:

$$M_{\text{Weekly}} = \frac{Q_{\text{Weekly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$

$$= \frac{1.25 \times 20 \times 8.34}{2.2}$$

$$= 95 \text{ kg/day}$$

#### 4.7.5 Fecal Coliform Bacteria:

#### Current Phase (0.4 MGD) and Future Phase (1.0 MGD):

• Weekly Average Concentration:

C Weekly = 
$$C_{Monthly}$$
 (#/100 mL) x 2  
=  $200 \times 2$   
=  $400 \text{ #}/100 \text{ mL}$ 

#### 4.7.6. Total Residual Chlorine (TRC):

#### Current Phase (0.4 MGD):

• Daily Maximum Concentration:

[TRC] Effluent 
$$= \frac{[Q_{Effluent} (ft^3/sec) + 7Q10 (ft^3/sec)] \times [TRC]_{Stream} (mg/L)}{Q_{Effluent} (ft^3/sec)}$$

$$= \frac{(0.62 + 3.9) \times 0.011}{0.62}$$

$$= 0.08 \text{ mg/L}$$

#### Future Phase (1.0 MGD):

• Daily Maximum Concentration:

[TRC] Effluent 
$$= \frac{[Q_{Effluent} (ft^3/sec) + 7Q10 (ft^3/sec)] \times [TRC]_{Stream} (mg/L)}{Q_{Effluent} (ft^3/sec)}$$

$$= \frac{(1.54 + 3.9) \times 0.011}{1.54}$$

$$= 0.04 \text{ mg/L}$$

#### 4.7.7 *Ammonia*:

• Toxicity Analysis:

The chronic criterion based on *Villosa iris* (rainbow mussel) is determined as follows:

CCC = 
$$0.8876 \text{ x} \left( \frac{0.0278}{1 + 10^{7.688 \text{-pH}}} + \frac{1.1994}{1 + 10^{\text{pH-7.688}}} \right) \text{ x } 2.126 \text{ x } 10^{0.028 \text{ x } (20\text{-MAX}(T,7))} \text{ mg/L}$$

Where: pH : pH of receiving stream and discharge

T : Temperature of receiving stream CCC : Chronic Continuous Concentration

The ammonia effluent limit (monthly average) is then calculated as follows:

$$[NH_3]_{Effluent} = \frac{\left(Q_{Effluent} \left(ft^3/\text{sec}\right) + 30Q3 \left(ft^3/\text{sec}\right)\right) \times CCC \left(mg/L\right) - 30Q3 \left(ft^3/\text{sec}\right) \times [NH_3]_{Stream \ Background} \left(mg/L\right)}{Q_{Effluent} \left(ft^3/\text{sec}\right)}$$

Refer to *Appendix B* for detailed calculations.

#### Current Phase (0.4 MGD):

• Weekly Average Concentration:

[C] weekly 
$$= [C]_{Monthly} (mg/L) \times 1.5$$
$$= 10 \times 1.5$$
$$= 15 \text{ mg/L}$$

• *Monthly Average Mass Loading:* 

$$M_{\text{Monthly}} = \frac{Q_{\text{Monthly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 (\text{lbs/gal})}{2.2 (\text{lbs/Kg})}$$

$$= \frac{0.4 \times 10 \times 8.34}{2.2}$$

$$= 15 \text{ kg/day}$$

• Weekly Average Mass Loading:

$$M_{\text{Weekly}} = \frac{Q_{\text{Weekly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$

$$= \frac{1.0 \times 10 \times 8.34}{2.2}$$

$$= 19 \text{ kg/day}$$

#### Future Phase (1.0 MGD):

• Weekly Average Concentration:

[C] weekly = [C] Monthly (mg/L) x 1.5  
= 
$$2.0 \times 1.5$$
  
=  $3.0 \text{ mg/L}$ 

• Monthly Average Mass Loading:

$$M_{Monthly} = \frac{Q_{Monthly} (MGD) \times [C]_{Monthly} (mg/L \text{ or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$

$$= \frac{1.0 \times 2.0 \times 8.34}{2.2}$$

$$= 7.6 \text{ kg/day}$$

Weekly Average Mass Loading:

$$M_{\text{Weekly}} = \frac{Q_{\text{Weekly}} (\text{MGD}) \times [C]_{\text{Monthly}} (\text{mg/L or ppm}) \times 8.34 \text{ (lbs/gal)}}{2.2 \text{ (lbs/Kg)}}$$

$$= \frac{1.25 \times 2.0 \times 8.34}{2.2}$$

$$= 9.5 \text{ kg/day}$$

#### 4.7.9 *Metals*

Not applicable

#### 4.8 Applicable Technology Based Effluent Limits (TBELS)

Technology-based effluent limitations aim to prevent pollution by requiring a minimum level of effluent quality that is attainable using demonstrated technologies for reducing discharges of pollutants or pollution into the waters of the United States. TBELs are developed independently of the potential impact of a discharge on the receiving water, which is addressed through water quality standards and water quality-based effluent limitations. The NPDES regulations at Title 40 of the Code of Federal Regulations 125.3(a) require NPDES permit writers to develop technology-based treatment requirements, consistent with CWA section 301(b), that represent the minimum level of control that must be imposed in a permit. The regulation also indicates that permit writers must include in permits additional or more stringent effluent limitations and conditions, including those necessary to protect water quality.

For pollutants not specifically regulated by Federal Effluent Limit Guidelines, the permit writer must identify any needed Technology-based effluent limitations and utilizes best professional judgment to establish technology-based limits or determine other appropriate means to control its discharge.

40 CFR Part §122.44(a)(1) requires that NPDES permits include applicable technology-based limitations and standards, while regulations at § 125.3(a)(1) state that TBELs for publicly owned treatment works must be based on secondary treatment standards and the "equivalent to secondary treatment standards" (40 CFR Part 133). The regulation applies to all POTWs and identifies the technology-based performance standards achievable based on secondary treatment for five-day biochemical oxygen demand (BOD<sub>5</sub>), total suspended solids (TSS), and pH.

The table below shows the secondary treatment standards:

| Parameter                                        | Secondary Treatment Standards |               |  |
|--------------------------------------------------|-------------------------------|---------------|--|
|                                                  | 30-day Average                | 7-day Average |  |
| $BOD_5$                                          | 30  mg/L                      | 45 mg/L       |  |
| TSS                                              | 30  mg/L                      | 45 mg/L       |  |
| BOD <sub>5</sub> and TSS removal (concentration) | ≥ 85%                         |               |  |
| pH (Daily Minimum – Daily Maximum)               | 6.0-9                         | .0 S.U.       |  |

#### 4.9 Comparison & Summary of Water Quality vs. Technology Based Effluent Limits

After determining applicable technology-based effluent limitations and water quality-based effluent limitations, the most stringent limits are applied in the permit:

#### 4.9.1. Current phase (0.4 MGD):

| Parameter                                     | WQBELS (1)      | TBELS (1)       |
|-----------------------------------------------|-----------------|-----------------|
|                                               | Monthly Average | Monthly Average |
| Five-Day Biochemical Oxygen Demand (mg/L)     | 30              | 30              |
| Total Suspended Solids (mg/L)                 | 30              | 30              |
| Ammonia (mg/L)                                | 10              | None            |
| Fecal Coliform Bacteria (#/100 mL)            | 200             | None            |
| Dissolved Oxygen (mg/L), Daily Minimum        | 2.0             | None            |
| Total Residual Chlorine (mg/L), Daily Maximum | 0.08            | None            |

Effluent limits in bold were included in the permit. Refer to Sections 4.5, 4.6, 4.7, and 4.8 above for more information.

#### 4.9.2. Future phase (1.0 MGD):

| Parameter                                     | WQBELS (1)      | TBELS (1)       |  |
|-----------------------------------------------|-----------------|-----------------|--|
|                                               | Monthly Average | Monthly Average |  |
| Five-Day Biochemical Oxygen Demand (mg/L)     | 11              | 30.0            |  |
| Total Suspended Solids (mg/L)                 | 20              | 30              |  |
| Total Phosphorus (mg/L)                       | 1.0             | None            |  |
| Ammonia (mg/L)                                | 2.0             | None            |  |
| Fecal Coliform Bacteria (#/100 mL)            | 200             | None            |  |
| Dissolved Oxygen (mg/L), Daily Minimum        | 5.0             | None            |  |
| Total Residual Chlorine (mg/L), Daily Maximum | 0.04            | None            |  |

<sup>(1)</sup> Effluent limits in bold were included in the permit. Refer to Sections 4.5, 4.6, 4.7, and 4.8 above for more information.

Blairsville WPCP NPDES Permit No. GA0033375

#### 5. OTHER PERMIT REQUIREMENTS AND CONSIDERATIONS

#### 5.1 Expansion to 1.0 MGD

On May 7, 2008, EPD concurred with the City's Antidegradation Review report, which concludes that requiring a no discharge alternative system for the City's plant upgrade and expansion would not be reasonable. In addition, EPD has determined that the lowering of water quality due to this expansion is necessary to accommodate important economic or social development in the area in which the receiving waters are located.

#### 5.2 Instream Monitoring

Instream monitoring for total hardness has been included in the draft permit. The stream data will be used when conducting reasonable potential evaluation for metals. Refer to *Appendix C* of the Fact Sheet for a copy of a Location Map showing the sampling locations.

#### 5.3 Long-Term BOD (LTBOD) Test

For facilities with a capacity of 1.0 MGD or greater, a 120-day long-term BOD test should be performed on an effluent sample collected during the critical period from June 1 through September 30; a requirement for long term BOD testing has been included in the draft permit under the B.2 effluent limitations (1.0 MGD).

#### 5.4 Industrial Pretreatment Program (IPP)

City of Blairsville does not have an approved IPP; therefore, language for establishing an IPP, if necessary, has been included in the draft permit.

#### 5.5 Sludge Management Plan (SMP)

The current permit includes language for an approved SMP to land apply sludge at agronomic rates. However, the City has not land applied sludge in the last 5 years and does not intend to do so in the future; therefore, the language for an approved SMP has been removed in the draft permit. The City disposes of sludge in a landfill (Santek Environmental – Murray Co. Landfill, 6585 US-411, Chatsworth, GA 30705); therefore, a SMP is not required.

#### **5.6** Watershed Protection Plan (WPP)

EPD concurred with the City's Watershed Assessment on August 25, 2011.

New or expanding treatment facilities are required to develop and implement a Watershed Protection Plan (WPP). Requirements to develop and implement a WPP have been included in the draft permit. The City will not be authorized to start operation under the Part I.B.2. effluent limitations (1.0 MGD) without an approved WPP.

Blairsville WPCP NPDES Permit No. GA0033375

#### 5.7 Service Delivery Strategy

City of Blairsville is in compliance with the Department of Community Affairs approved Service Delivery Strategy for Union County

#### 5.8 Per- and Polyfluoroalkyl Substances (PFAS) Study

Monitoring data from U.S. EPA indicates that PFAS were below the detection limit for the water in Lake Nottely, raw water in the Notla Public Water System and finished water in the Notla Public Water System, which are downstream of the discharge location. However, PFAS were detected in the effluent of the Blairsville WPCP. Refer to *Appendix D* of the Fact Sheet for more information regarding the testing results.

#### 5.9 Compliance Schedules

Effluent limitations are applicable immediately upon the effective date of the permit (Part I.B.1. - 0.4 MGD) or upon receiving EPD approval of construction completion and written authorization to operate (Part I.B.2 – 1.0 MGD).

#### 5.10 Anti-Backsliding

The limits in this permit are in compliance with the 40 C.F.R. 122.44(l), which requires a reissued permit to be as stringent as the previous permit.

#### 6. **REPORTING**

#### 6.1 Compliance office

The facility has been assigned to the following EPD office for reporting, compliance and enforcement:

Georgia Environmental Protection Division Mountain District – Cartersville Office Post Office Box 3250, 16 Center Road Cartersville, Georgia 30120

#### 6.2 E-Reporting

The permittee is required to electronically submit documents in accordance with 40 CFR Part 127.

#### 7. REQUESTED VARIANCES OR ALTERNATIVES TO REQUIRED STANDARDS

Not applicable

#### 8. PERMIT EXPIRATION

The permit will expire five years from the effective date.

#### 9. PROCEDURES FOR THE FORMULATION OF FINAL DETERMINATIONS

#### 9.1 Comment Period

The Georgia Environmental Protection Division (EPD) proposes to issue a permit to this applicant subject to the effluent limitations and special conditions outlined above. These determinations are tentative.

The permit application, draft permit, and other information are available for review at 2 Martin Luther King Jr. Drive, Suite 1152 East, Atlanta, Georgia 30334, between the hours of 8:00 a.m. and 4:30 p.m., Monday through Friday. For additional information, you can contact 404-463-1511.

#### 9.2 Public Comments

Persons wishing to comment upon or object to the proposed determinations are invited to submit same in writing to the EPD address above, or via e-mail at *EPDcomments@dnr.ga.gov* within 30 days of the initiation of the public comment period. All comments received prior to that date will be considered in the formulation of final determinations regarding the application. The permit number should be placed on the top of the first page of comments to ensure that your comments will be forwarded to the appropriate staff.

#### 9.3 Public Hearing

Any applicant, affected state or interstate agency, the Regional Administrator of the U.S. Environmental Protection Agency (EPA) or any other interested agency, person or group of persons may request a public hearing with respect to an NPDES permit application if such request is filed within thirty (30) days following the date of the public notice for such application. Such request must indicate the interest of the party filing the request, the reasons why a hearing is requested, and those specific portions of the application or other NPDES form or information to be considered at the public hearing.

The Director shall hold a hearing if he determines that there is sufficient public interest in holding such a hearing. If a public hearing is held, notice of same shall be provided at least thirty (30) days in advance of the hearing date.

In the event that a public hearing is held, both oral and written comments will be accepted; however, for the accuracy of the record, written comments are encouraged. The Director or a designee reserves the right to fix reasonable limits on the time allowed for oral statements and such other procedural requirements, as deemed appropriate.

Following a public hearing, the Director, unless it is decided to deny the permit, may make such modifications in the terms and conditions of the proposed permit as may be appropriate and shall issue the permit.

If no public hearing is held, and, after review of the written comments received, the Director determines that a permit should be issued and that the determinations as set forth in the proposed permit are substantially unchanged, the permit will be issued and will

become final in the absence of a request for a contested hearing. Notice of issuance or denial will be made available to all interested persons and those persons that submitted written comments to the Director on the proposed permit.

If no public hearing is held, but the Director determines, after a review of the written comments received, that a permit should be issued but that substantial changes in the proposed permit are warranted, public notice of the revised determinations will be given and written comments accepted in the same manner as the initial notice of application was given and written comments accepted pursuant to EPD Rules, Water Quality Control, subparagraph 391-3-6-.06(7)(b). The Director shall provide an opportunity for public hearing on the revised determinations. Such opportunity for public hearing and the issuance or denial of a permit thereafter shall be in accordance with the procedures as are set forth above.

#### 9.4 Final Determination

At the time that any final permit decision is made, the Director shall issue a response to comments. The issued permit and responses to comments can be found at the following address:

http://epd.georgia.gov/watershed-protection-branch-permit-and-public-comments-clearinghouse-0

#### 9.5 Contested Hearings

Any person who is aggrieved or adversely affected by the issuance or denial of a permit by the Director of EPD may petition the Director for a hearing if such petition is filed in the office of the Director within thirty (30) days from the date of notice of such permit issuance or denial. Such hearing shall be held in accordance with the EPD Rules, Water Quality Control, subparagraph 391-3-6-.01.

Petitions for a contested hearing must include the following:

- 1. The name and address of the petitioner;
- 2. The grounds under which petitioner alleges to be aggrieved or adversely affected by the issuance or denial of a permit;
- 3. The reason or reasons why petitioner takes issue with the action of the Director;
- 4. All other matters asserted by petitioner which are relevant to the action in question.

# **FACT SHEET**

# Appendix A

City of Blairsville Water Pollution Control Plant NPDES Permit No. GA0033375

Waste Load Allocation (WLA)

# National Pollutant Discharge Elimination System Waste Load Allocation Form

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vvasi                       | e Load                                  | AllC                   | Cati            | on For                                    | m         |                                            |                        |                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|------------------------|-----------------|-------------------------------------------|-----------|--------------------------------------------|------------------------|----------------------------------|
| Part I: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Backgr                         | ound In                      | formatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                           |                                         |                        |                 |                                           |           | THE REAL PROPERTY.                         |                        |                                  |
| WLA Reques<br>Facility Name<br>NPDES Perm<br>Receiving Wa<br>Discharge Ty<br>Industrial Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e:<br>nit No.:<br>ater:<br>pe: | GA0033<br>Buttern<br>Domesti | lle WPCP<br>375<br>ut Creek<br>c⊠ In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Expansion   dustrial        | Expira                                  | tion Date<br>ver Basin | County:<br>Dece | Discharge Union Union ember 31, 26 lessee | 018       | V<br>Outfall No<br>10-Digi<br>Requested (I | umber: 00<br>t HUC: 06 | 503<br>01<br>502000208<br>4, 1.0 |
| Treatment Process Description:  Additional Information: (history, special conditions, other facilities):  Requested by: Kelli-Ann Sottile  Title: Environmental Engineer  Telephone:  B1: Manual/mechanical bar screen, grit removal, sequencing batch reactors, equalization basin, chlorination and wetlands.  Program: WRP  Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                        |                 |                                           |           |                                            |                        |                                  |
| relephon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ie.                            | _                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                         | _                      | _               |                                           | Date.     |                                            |                        |                                  |
| Receiving Wa<br>Integrated 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ater: E<br>5(b)/303            | Sutternut<br>(d) List:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u <b>tary to *Lak</b><br>No | e Nottely<br>Support :  Parameter(s)    |                        | Not Supp        | 100000000000000000000000000000000000000   | Criteria: | Bio-F, FC                                  |                        | ⊠ No □                           |
| Total Maximum Daily Load: Yes No Parameter(s) Sediment (Bio-F), FC WLA Complies with TMDL Yes No FC TMDL (GA EPD, 2004): All wastewater treatment facilities with the potential for the occurrence of fecal coliform in their discharge will be given end-of-pipe limits equivalent to the WQ standard of 200 counts/100 ml or less.  Sediment TMDL (GA EPD, 2004): The WLA loads were calculated based on design flow & permitted TSS concentration for the municipal facilities. If a facility expands its capacity & permitted flow increases, the WLA for the facility would increase in proportion to the flow.  *Lake Nottely is listed as supporting its designated use on the 2014/Draft 2016 Georgia's 305(b)/303(d) List.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                        |                 |                                           |           |                                            |                        |                                  |
| Part III:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                          | Quality                      | Model R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eview Info                  | rmation                                 |                        | 100             |                                           |           |                                            |                        |                                  |
| Model Type: Uncalibrated ☐ Calibrated ☐ Verified ☐ Cannot be Modeled ☐ Model Length (mi): 1 Field Data: None ☐ Fair ☐ Good ☒ Excellent ☐ Model and Field Data Description: Measured data in Butternut Creek and Lake Nottely. Steady-state dissolved oxygen GA DOSAG model for Butternut Creek. EFDC hydrodynamic and water quality model for Lake Nottely. Model parameters are for GA DOSAG model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                        |                 |                                           |           |                                            |                        |                                  |
| 7Q10 Yield (cfs/mi²):         0.34         Velocity (range fps):         0.77, 0.81         30Q3 streamflow at discharge (cfs):         7.4           Effluent Flow Rate (cfs):         0.62,1.54         7Q10 IWC (%):         13.6, 28.3         7Q10 streamflow at discharge (cfs):         3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                        |                 |                                           |           |                                            |                        |                                  |
| Slope (range - fpm): 14.8-16.9 K1: 0.15 K3: 0.15 K2 (range): 17-19, 18-20 1Q10 streamflow at discharge (cfs): 3.6 SOD: 0.7 Escape Coef. (ft <sup>-1</sup> ): 0.08 f-Ratio (BODu/BOD5): 2,3 Background Hardness (as CaCO <sub>3</sub> )(mg/L): 14  The predicted minimum DO concentrations in Butternut Creek are 6.3 mg/L and 6.4 mg/L, at immediately downstream from the 0.4 MGD and 1.0 MGD discharges, respectively.  Hardness is based on limited data at Butternut Creek near Meek's Park, downstream from the discharge. Monitoring is recommended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                        |                 |                                           |           |                                            |                        |                                  |
| Doet IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page                           | mmond                        | ed Bermi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t Limitatio                 | ne and C                                | onditio                | ne (m           | all as a l                                | monthly   | average                                    | oveent as              | noted)                           |
| Part IV:<br>Rationale:<br>Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Same a                         | s current<br>out Creek       | The state of the s |                             | lew 🗆                                   | onaille                | m) enc          | g/Lasa i                                  | nonuny    | average                                    | ехсері аз              | s noted)                         |
| Effluent<br>Flow Rate<br>(MGD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BOD <sub>5</sub>               | NH <sub>3</sub> -N           | DO<br>(minimum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pH<br>(std. units)          | Fecal<br>Coliform<br>(counts/<br>100ml) | TRC                    | TSS             | TP                                        | Ortho-P   | TKN                                        | Nitrate-<br>Nitrite    | Organic<br>Nitrogen              |
| 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                             | 10                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.0 - 9.0                   | 200                                     | 0.08                   | 30              | Monitor                                   | Monitor   | Monitor                                    | Monitor                | Calculated                       |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                             | 2.0                          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.0 - 9.0                   | 200                                     | 0.04                   | 20              | 1.0                                       | Monitor   | Monitor                                    | Monitor                | Calculated                       |
| <ul> <li>Additional Comments:</li> <li>Priority pollutant permit limits, aquatic toxicity testing requirements and other parameters required by the categorical effluent guidelines or identified during review of permit application are to be determined by the Wastewater Regulatory Program.</li> <li>The current ammonia limits for both effluent flow rates meet the US EPA's Aquatic Life Ambient WQ Criteria for Ammonia-Freshwater under 30Q3 streamflow condition and current maximum effluent pH.</li> <li>Effluent monitoring of Ortho-P, TKN and nitrate-nitrite is recommended. TP and Ortho-P should be analyzed from the same effluent sample. Ortho-P is a component of TP and should always be less than or equal to TP. The nitrogen constituents should be analyzed from the same effluent sample. Organic Nitrogen should be calculated as TKN minus NH<sub>3</sub>.</li> <li>Communities requesting an expansion of their surface water discharge capacity are required to prepare a Watershed Assessment (WA) and a Watershed Protection Plan (WPP) for the watersheds in their jurisdiction. The WA and WPP must be reviewed and approved by the Georgia Environmental Protection Division prior to receiving authorization permitting effluent flow rates greater than 0.4 MGD.</li> </ul> |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                        |                 |                                           |           |                                            |                        |                                  |
| Prepared by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Azar                           | ina Carmi                    | cal AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date: July                  | y 31, 2018                              |                        | Reviewe         | d by: Jo                                  | sh Welte  | TW 1                                       | Date: 31.70            | 148                              |
| Part V: Program Manager Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                        |                 |                                           |           |                                            |                        |                                  |
| Elizabeth I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Booth                          | 6                            | inal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ett b                       | Boot                                    | 1                      |                 |                                           |           |                                            | Date: S                | 2/18                             |

Georgia Department of Natural Resources Environmental Protection Division Atlanta, Georgia

# **FACT SHEET**

# Appendix B

City of Blairsville Water Pollution Control Plant NPDES Permit No. GA0033375

Ammonia Toxicity Calculations

# Ammonia Toxicity Analysis for Waste Load Allocation Development

Date: 7/30/2018

Facility: BLAIRSVILLE WPCP

NPDES Permit Number: GA0033375

Receiving Stream: BUTTERNUT CREEK Engineer: AZARINA CARMICAL

Comments: USING ANNUAL 30Q3. B1 FLOW (0.4 MGD)

#### Stream and Facility Data:

Background Stream pH (standard units): 7.0

Effluent pH (standard units): 9.0
Final Stream pH (standard units): 7.03
Stream Temperature (Celsius): 25.0

30Q3 Streamflow (cfs): 7.4

Stream background concentration (Total NH3-N, mg/L): 0.3

Facility Discharge (MGD/cfs): 0.4 0.62

Total Combined Flow (cfs): 8.02

Effluent concentration (Total NH3-N, mg/L) = 13.9

If 13.9 is greater than 17.4 mg/L, use 17.4 mg/L in WLA modeling.

#### Chronic Criterion based on Villosa iris (Rainbow mussel):

Instream CCC = criterion continuous concentration (chronic criterion):

CCC =  $0.8876 \times (0.0278 / (1 + 10^{(7.688 - pH)}) + 1.1994 / (1 + 10^{(pH - 7.688)})) \times (2.126 \times 10^{0.028 \times (20 - MAX(T,7))})$ 

Allowable instream concentration CCC (Total NH3-N, mg/l) = 1.35

#### Acute Criterion when Oncorhynchus salmonid species are present:

Instream Criterion Maximum Concentration (CMC) = same as acute criterion:

Instream CMC = Min((0.275 / (1 +  $10^{(7.204 - pH)})) + (39.0 / (1 + <math>10^{(pH - 7.204)})), 0.7249 \times (0.0114/(1 + <math>10^{(7.204 - pH)}) + 1.6181 / (1 + <math>10^{(pH - 7.204)})) \times (23.12 \times 10^{(0.036 \times (20 - T))})$ 

Allowable instream concentration CMC, (Total NH3-N mg/l) = 10.74

#### Acute Criterion when Oncorhynchus salmonid species are absent:

Instream CMC =  $0.7249 \times (0.0114/(1 + 10^{(7.204 - pH)}) + 1.6181 / (1 + 10^{(pH - 7.204)})) \times MIN(51.93, 23.12 \times 10^{(0.036 \times (20 - T))})$ 

Allowable instream concentration CMC, (Total NH3-N mg/l) = 10.74

#### Based on National Criterion For Ammonia In Fresh Water As Revised In Year 2013

Source: Aquatic Life Ambient Water Quality Criteria for Ammonia - Freshwater 2013, U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, EPA-822-R-13-001. April 2013. Washington, D.C.

# Ammonia Toxicity Analysis for Waste Load Allocation Development

Date: 7/30/2018

Facility: BLAIRSVILLE WPCP

NPDES Permit Number: GA0033375

Receiving Stream: BUTTERNUT CREEK Engineer: AZARINA CARMICAL

Comments: USING ANNUAL 30Q3. B2 FLOW (1.0 MGD)

#### Stream and Facility Data:

Background Stream pH (standard units): 7.0

Effluent pH (standard units): 9.0
Final Stream pH (standard units): 7.08
Stream Temperature (Celsius): 25.0

30Q3 Streamflow (cfs): 7.4

Stream background concentration (Total NH3-N, mg/L): 0.3

Facility Discharge (MGD/cfs): 1 1.55

Total Combined Flow (cfs): 8.95

Effluent concentration (Total NH3-N, mg/L) = 6.2

If 6.2 is greater than 17.4 mg/L, use 17.4 mg/L in WLA modeling.

#### Chronic Criterion based on Villosa iris (Rainbow mussel):

Instream CCC = criterion continuous concentration (chronic criterion):

CCC =  $0.8876 \times (0.0278 / (1 + 10^{(7.688 - pH)}) + 1.1994 / (1 + 10^{(pH - 7.688)})) \times (2.126 \times 10^{0.028 \times (20 - MAX(T,7))})$ 

Allowable instream concentration CCC (Total NH3-N, mg/l) = 1.32

#### Acute Criterion when Oncorhynchus salmonid species are present:

Instream Criterion Maximum Concentration (CMC) = same as acute criterion:

Instream CMC = Min((0.275 / (1 +  $10^{(7.204 - pH)})) + (39.0 / (1 + <math>10^{(pH - 7.204)})), 0.7249 \times (0.0114/(1 + <math>10^{(7.204 - pH)}) + 1.6181 / (1 + <math>10^{(pH - 7.204)})) \times (23.12 \times 10^{(0.036 \times (20 - T))})$ 

Allowable instream concentration CMC, (Total NH3-N mg/l) = 10.27

#### Acute Criterion when Oncorhynchus salmonid species are absent:

Instream CMC =  $0.7249 \times (0.0114/(1 + 10^{(7.204 - pH)}) + 1.6181 / (1 + 10^{(pH - 7.204)})) \times MIN(51.93, 23.12 \times 10^{(0.036 \times (20 - T))})$ 

Allowable instream concentration CMC, (Total NH3-N mg/l) = 10.27

#### Based on National Criterion For Ammonia In Fresh Water As Revised In Year 2013

Source: Aquatic Life Ambient Water Quality Criteria for Ammonia - Freshwater 2013, U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, EPA-822-R-13-001. April 2013. Washington, D.C.

# **FACT SHEET**

# Appendix C

City of Blairsville Water Pollution Control Plant NPDES Permit No. GA0033375

Location Map



Blairsville Water Pollution Control Plant NPDES Permit No. GA0033375

Prepared By: Chris Bruegge

Source: Google Earth

# **FACT SHEET**

# Appendix D

City of Blairsville Water Pollution Control Plant NPDES Permit No. GA0033375

Per- and Polyfluoroalkyl Substances (PFAS) Study



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

#### February 19, 2020

### **MEMORANDUM**

**SUBJECT:** FINAL Analytical Report

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

**FROM:** Jason Collum

LSB Organic Chemistry Section Chief, Acting

THRU: Sandra Aker, Chief

Laboratory Services Branch

TO: Nathan Barlet

Attached are the final results for the analytical groups listed below. This report shall not be reproduced except in full without approval of the Region 4 laboratory. These analyses were performed in accordance with the Laboratory Services Branch's Laboratory Operations and Quality Assurance Manual (LSB LOQAM) found at www.epa.gov/region4/sesd/asbsop. Any unique project data quality objectives specified in writing by the data requestor have also been incorporated into the data unless otherwise noted in the Report Narrative. Chemistry data have been verified based on the LSB LOQAM specifications and have been qualified by this laboratory if the applicable quality control criteria were not met. Verification is defined in Chapter 5 of the LSB LOQAM. For a listing of specific data qualifiers and explanations, please refer to the Data Qualifier Definitions included in this report. The reported results are accurate within the limits of the method(s) and are representative only of the samples as received by the laboratory.

Analyses Included in this report: Method Used: Accreditations:

2/19/20 10:50

Semi Volatile Organics (SVOA)

PFAS ASBPROC-800PFAS (Water)

Page 1 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

#### Sample Disposal Policy

Due to limited space for long term sample storage, LSB's policy is to dispose of samples on a periodic schedule. Air samples collected in summa canisters will be disposed of 30 days following the issuance of this report. All other sample media including original samples, sample extracts and or digestates will be disposed of, in accordance with applicable regulations, 60 days from the date of this report.

This sample disposal policy does not apply to criminal samples which are held until the laboratory is notified by the criminal investigators that case development and litigation are complete.

These samples may be held in the laboratory's custody for a longer period of time. If samples require storage beyond the 60-day period, please contact the Sample Control Coordinator by e-mail at R4SampleCustody@epa.gov.

Page 2 of 52



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

### SAMPLES INCLUDED IN THIS REPORT

### Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

| Sample ID                                 | Laboratory ID       | Matrix                   | Date Collected | Date Received |
|-------------------------------------------|---------------------|--------------------------|----------------|---------------|
| 11-Lake Nottely Field Blank               | E200304 <b>-</b> 01 | Field Blank              | 1/16/20 13:45  | 1/17/20 11:15 |
| 14 <b>-</b> Notla Field Blank             | E200304 <b>-</b> 02 | Field Blank              | 1/16/20 13:55  | 1/17/20 11:15 |
| 16-Large Glove Lot Blank (807DD133)       | E200304 <b>-</b> 03 | Equipment Rinse Blank    | 1/16/20 08:38  | 1/17/20 11:15 |
| 17-X-Large Glove Lot Blank (902DD156)     | E200304 <b>-</b> 04 | Equipment Rinse Blank    | 1/16/20 08:41  | 1/17/20 11:15 |
| 1-EPA Trip Blank AMU                      | E200304 <b>-</b> 05 | Trip Blank - Water       | 1/16/20 09:00  | 1/17/20 11:15 |
| 1-EPA Trip Blank FMU                      | E200304 <b>-</b> 06 | Trip Blank - Water       | 1/16/20 09:00  | 1/17/20 11:15 |
| 3-Influent Decontamination Blank          | E200304 <b>-</b> 07 | Equipment Rinse Blank    | 1/16/20 11:42  | 1/17/20 11:15 |
| 6-POTW Field Blank                        | E200304 <b>-</b> 08 | Field Blank              | 1/16/20 11:56  | 1/17/20 11:15 |
| 9-Downstream Field Blank                  | E200304 <b>-</b> 09 | Field Blank              | 1/16/20 12:30  | 1/17/20 11:15 |
| 10-Lake Nottely (Intake)                  | E200304 <b>-</b> 10 | Surface Water            | 1/16/20 13:40  | 1/17/20 11:15 |
| 8-Downstream of POTW (Meeks Park)         | E200304 <b>-</b> 11 | Surface Water            | 1/16/20 12:25  | 1/17/20 11:15 |
| 15-EPD Lab DI Water                       | E200304 <b>-</b> 12 | Organic Free Water Blank | 1/16/20 08:35  | 1/17/20 11:15 |
| 13-Finished Water (Notla Treatment Plant) | E200304 <b>-</b> 13 | Potable Water            | 1/16/20 13:46  | 1/17/20 11:15 |
| 4-Landfill Leachate                       | E200304 <b>-</b> 14 | Leachate Water           | 1/16/20 11:45  | 1/17/20 11:15 |
| 5-POTW Effluent                           | E200304 <b>-</b> 15 | Wastewater               | 1/16/20 11:53  | 1/17/20 11:15 |
| 5-POTW Effluent (Dup)                     | E200304 <b>-</b> 16 | Wastewater               | 1/16/20 11:54  | 1/17/20 11:15 |
| 2-POTW Influent                           | E200304 <b>-1</b> 7 | Wastewater               | 1/16/20 11:35  | 1/17/20 11:15 |
| 12-Raw Water (Notla Treatment Plant)      | E200304 <b>-</b> 18 | Potable Water            | 1/16/20 13:45  | 1/17/20 11:15 |
| 7-Upstream of POTW (US HWY 19)            | E200304-19          | Surface Water            | 1/16/20 11:42  | 1/17/20 11:15 |

Page 3 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

#### DATA QUALIFIER DEFINITIONS

| U            | The analyte was not detected at or above the reporting limit.                       |
|--------------|-------------------------------------------------------------------------------------|
| J            | The identification of the analyte is acceptable; the reported value is an estimate. |
| Q <b>-</b> 2 | Result greater than MDL but less than MRL.                                          |
| QL-1         | Laboratory Control Spike Recovery less than method control limits                   |
| QM-1         | Matrix Spike Recovery less than method control limits                               |
| OS-3         | Surrogate recovery is lower than established control limits.                        |

#### **ACRONYMS AND ABBREVIATIONS**

| CAS  | Chemical Abstracts Service  |
|------|-----------------------------|
| ( A) | Chemical Abstracts Scrivice |

Note: Analytes with no known CAS identifiers have been assigned codes beginning with "E", the EPA ID as assigned by the EPA Substance Registry System (www.epa.gov/srs), or beginning with "R4-", a unique identifier assigned by the EPA Region 4 laboratory.

- MDL Method Detection Limit The minimum concentration of a substance (an analyte) that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero.
- MRL Minimum Reporting Limit Analyte concentration that corresponds to the lowest demonstrated level of acceptable quantitation. The MRL is sample-specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments.
- TIC Tentatively Identified Compound An analyte identified based on a match with the instrument software's mass spectral library. A calibration standard has not been analyzed to confirm the compound's identification or the estimated concentration reported.

#### ACCREDITATIONS:

ISO ASB is accredited by ISO/IEC 17025, including an amplification for forensic accreditation through ANSI-ASQ National Accreditation Board.

Refer to the certificate and scope of accreditation AT-1644 at: http://www.epa.gov/aboutepa/about-region-4s-science-and-ecosystem-support-division-sesd

NR The EPA Region 4 Laboratory has not requested accreditation for this test.



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 11-Lake Nottely Field Blank

Station ID:

Matrix: Field Blank

Date Collected: 1/16/20 13:45

|                              | ecteu: 1/10/20 15:45 |         |                     |       |     |                 |                  |                                  |
|------------------------------|----------------------|---------|---------------------|-------|-----|-----------------|------------------|----------------------------------|
| CAS<br>Number                | Analyte              | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method                           |
| 757124-72-4                  | 4:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC=800PF<br>AS              |
| 27619-97-2                   | 6:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC <del>-</del> 800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS               | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC <del>-</del> 800PF<br>AS |
| 754 <b>-</b> 91 <b>-</b> 6   | FOSA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC=800PF<br>AS              |
| 13252-13-6                   | HFPO <b>-</b> DA     | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC <del>-</del> 800PF<br>AS |
| 2355-31-9                    | N-MeFOSAA            | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC-800PF<br>AS              |
| 375 <b>-</b> 22 <b>-</b> 4   | PFBA                 | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 73 <b>-</b> 5   | PFBS                 | 36      | U                   | ng/L  | 36  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC <del>-</del> 800PF<br>AS |
| 335 <b>-</b> 76 <b>-</b> 2   | PFDA                 | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC=800PF<br>AS              |
| 307-55-1                     | PFDoA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC <del>-</del> 800PF<br>AS |
| 335=77=3                     | PFDS                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC-800PF<br>AS              |
| 375-85-9                     | PFHpA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS                | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC-800PF<br>AS              |
| 307-24-4                     | PFHxA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC-800PF<br>AS              |
| 355-46-4                     | PFHxS                | 37      | U, J, QL-1          | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1   | PFNA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC-800PF<br>AS              |
| 68259-12-1                   | PFNS                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC-800PF<br>AS              |
| 335=67=1                     | PFOA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC-800PF<br>AS              |
| 1763-23-1                    | PFOS                 | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC-800PF<br>AS              |
| 2706-90-3                    | PFPeA                | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC <del>-</del> 800PF<br>AS |

Page 5 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 11-Lake Nottely Field Blank

Station ID:

Matrix: Field Blank

Date Collected: 1/16/20 13:45

| CAS<br>Number                | Analyte | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method              |
|------------------------------|---------|--------------------|-------|-----|-----------------|------------------|---------------------|
| 2706-91-4                    | PFPeS   | 38 U, J, QL-1      | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC=800PF<br>AS |
| 72629 <b>-</b> 94 <b>-</b> 8 | PFTrDA  | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC=800PF<br>AS |
| 2058-94-8                    | PFUdA   | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>13:37 | ASBPROC=800PF<br>AS |

Page 6 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 14-Notla Field Blank
Lab ID: E200304-02
Station ID: Matrix: Field Blank

Date Collected: 1/16/20 13:55

|                            | ected: 1/16/20 15:55 |         |                     |       |     |                 |                  |                                  |
|----------------------------|----------------------|---------|---------------------|-------|-----|-----------------|------------------|----------------------------------|
| CAS<br>Number              | Analyte              | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method                           |
| 757124-72-4                | 4:2FTS               | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 27619-97-2                 | 6:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC <del>-</del> 800PF<br>AS |
| 39108-34-4                 | 8:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 754 <b>-</b> 91 <b>-</b> 6 | FOSA                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 13252-13-6                 | HFPO <b>-</b> DA     | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 2355=31=9                  | N-MeFOSAA            | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC-800PF<br>AS              |
| 375-22-4                   | PFBA                 | 39      | U, J, QS <b>-</b> 3 | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 375=73=5                   | PFBS                 | 35      | U, J, QS <b>-</b> 3 | ng/L  | 35  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 335=76=2                   | PFDA                 | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 307-55-1                   | PFDoA                | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 335=77=3                   | PFDS                 | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC-800PF<br>AS              |
| 375-85-9                   | PFHpA                | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 375=92=8                   | PFHpS                | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC-800PF<br>AS              |
| 307-24-4                   | PFHxA                | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC-800PF<br>AS              |
| 355-46-4                   | PFHxS                | 36      | U, J, QL-1          | ng/L  | 36  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 375 <b>-</b> 95 <b>-</b> 1 | PFNA                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC-800PF<br>AS              |
| 68259-12-1                 | PFNS                 | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC <del>-</del> 800PF<br>AS |
| 335-67-1                   | PFOA                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC-800PF<br>AS              |
| 1763-23-1                  | PFOS                 | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC <del>-</del> 800PF<br>AS |
| 2706-90-3                  | PFPeA                | 39      | U, J, QS <b>-</b> 3 | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC <del>-</del> 800PF<br>AS |

Page 7 of 52 E2003

2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 14-Notla Field Blank
Lab ID: E200304-02
Station ID: Matrix: Field Blank

Date Collected: 1/16/20 13:55

| CAS        |         |                    |       |     |                 |                  |                                  |
|------------|---------|--------------------|-------|-----|-----------------|------------------|----------------------------------|
| Number     | Analyte | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
| 2706-91-4  | PFPeS   | 37 U, J, QL-1      | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC=800PF<br>AS              |
| 72629-94-8 | PFTrDA  | 39 U               | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8  | PFUdA   | 39 U               | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>20:18 | ASBPROC <del>-</del> 800PF<br>AS |

Page 8 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 16-Large Glove Lot Blank (807DD133) Lab ID: E200304-03

Station ID: Matrix: Equipment Rinse Blank

Date Collected: 1/16/20 8:38

| Dute con                     | ecteu: 1/16/20 8:58 |                    |               |     |                 |                  |                     |
|------------------------------|---------------------|--------------------|---------------|-----|-----------------|------------------|---------------------|
| CAS<br>Number                | Analyte             | Results Qua        | lifiers Units | MRL | Prepared        | Analyzed         | Method              |
| 757124-72-4                  | 4:2FTS              | 37 U, J,           | QS-3 ng/L     | 37  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |
| 27619-97-2                   | 6:2FTS              | 38 U               | ng/L          | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS              | 38 U               | ng/L          | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |
| 754 <b>-</b> 91 <b>-</b> 6   | FOSA                | 40 U               | ng/L          | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |
| 13252-13-6                   | HFPO <b>-</b> DA    | 40 <mark>U</mark>  | ng/L          | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |
| 2355=31=9                    | N <b>-</b> MeFOSAA  | 160 <mark>U</mark> | ng/L          | 160 | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC-800PF<br>AS |
| 375-22-4                     | PFBA                | 40 U, J,           | QS-3 ng/L     | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC-800PF<br>AS |
| 375 <b>-</b> 73 <b>-</b> 5   | PFBS                | 35 U               | ng/L          | 35  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |
| 335=76=2                     | PFDA                | 160 <mark>U</mark> | ng/L          | 160 | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC-800PF<br>AS |
| 307-55-1                     | PFDoA               | 40 U               | ng/L          | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |
| 335=77=3                     | PFDS                | 38 U               | ng/L          | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC-800PF<br>AS |
| 375-85-9                     | РҒНрА               | 40 <mark>U</mark>  | ng/L          | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC•800PF<br>AS |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS               | 38 U               | ng/L          | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC-800PF<br>AS |
| 307-24-4                     | PFHxA               | 40 U               | ng/L          | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC-800PF<br>AS |
| 355-46-4                     | PFHxS               | 36 U, J,           | QL-1 ng/L     | 36  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 95-1            | PFNA                | 40 U               | ng/L          | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC-800PF<br>AS |
| 68259-12-1                   | PFNS                | 38 U               | ng/L          | 38  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |
| 335 <b>-</b> 67 <b>-</b> 1   | PFOA                | 40 U               | ng/L          | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC-800PF<br>AS |
| 1763-23-1                    | PFOS                | 37 U               | ng/L          | 37  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC-800PF<br>AS |
| 2706-90-3                    | PFPeA               | 40 U, J,           | QS-3 ng/L     | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS |

Page 9 of 52



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 16-Large Glove Lot Blank (807DD133) Lab ID: E200304-03

Station ID: Matrix: Equipment Rinse Blank

Date Collected: 1/16/20 8:38

| Dute con                     | 1/10/20 0:50 |         |            |       |     |                 |                  |                                  |
|------------------------------|--------------|---------|------------|-------|-----|-----------------|------------------|----------------------------------|
| CAS<br>Number                | Analyte      | Results | Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
| 2706-91-4                    | PFPeS        | 37      | U, J, QL-1 | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC=800PF<br>AS              |
| 72629 <b>-</b> 94 <b>-</b> 8 | PFTrDA       | 40      | U          | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC <b>-</b> 800PF<br>AS     |
| 2058-94-8                    | PFUdA        | 40      | U          | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>20:41 | ASBPROC <del>-</del> 800PF<br>AS |

Page 10 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Lab ID: <u>E200304-04</u> Sample ID: 17-X-Large Glove Lot Blank (902DD156)

**Station ID:** Matrix: Equipment Rinse Blank

Date Collected: 1/16/20 8:41

| Date con                     | ecteu: 1/16/20 8:41 |         |                     |       |     |                 |                  |                     |
|------------------------------|---------------------|---------|---------------------|-------|-----|-----------------|------------------|---------------------|
| CAS<br>Number                | Analyte             | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method              |
| 757124-72-4                  | 4:2FTS              | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |
| 27619 <b>-</b> 97 <b>-</b> 2 | 6:2FTS              | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS              | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |
| 754 <b>-</b> 91-6            | FOSA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |
| 13252-13-6                   | HFPO•DA             | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |
| 2355-31-9                    | N-MeFOSAA           | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC-800PF<br>AS |
| 375-22-4                     | PFBA                | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 73 <b>-</b> 5   | PFBS                | 35      | U                   | ng/L  | 35  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |
| 335=76=2                     | PFDA                | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC-800PF<br>AS |
| 307-55-1                     | PFDoA               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |
| 335=77=3                     | PFDS                | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC-800PF<br>AS |
| 375-85-9                     | РҒНрА               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC•800PF<br>AS |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC-800PF<br>AS |
| 307-24-4                     | PFHxA               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC-800PF<br>AS |
| 355-46-4                     | PFHxS               | 36      | U, J, QL-1          | ng/L  | 36  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1   | PFNA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC-800PF<br>AS |
| 68259-12-1                   | PFNS                | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC-800PF<br>AS |
| 335=67=1                     | PFOA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC-800PF<br>AS |
| 1763-23-1                    | PFOS                | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC-800PF<br>AS |
| 2706-90-3                    | PFPeA               | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS |

E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 17-X-Large Glove Lot Blank (902DD156) Lab ID: E200304-04

Station ID: Matrix: Equipment Rinse Blank

Date Collected: 1/16/20 8:41

| CAS<br>Number                | Analyte | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
|------------------------------|---------|--------------------|-------|-----|-----------------|------------------|----------------------------------|
| 2706-91-4                    | PFPeS   | 37 U, J, QL-1      | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC=800PF<br>AS              |
| 72629 <b>-</b> 94 <b>-</b> 8 | PFTrDA  | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8                    | PFUdA   | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:04 | ASBPROC <del>-</del> 800PF<br>AS |

Page 12 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Lab ID: <u>E200304-05</u> Sample ID: <u>1-EPA Trip Blank AMU</u> **Station ID:** Matrix: Trip Blank - Water

Date Collected: 1/16/20 9:00

|                              | ecteu: 1/16/20 9:00 |         |                     |       |     |                 |                  |                     |
|------------------------------|---------------------|---------|---------------------|-------|-----|-----------------|------------------|---------------------|
| CAS<br>Number                | Analyte             | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method              |
| 757124-72-4                  | 4:2FTS              | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 27619-97-2                   | 6:2FTS              | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS              | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 754 <b>-</b> 91 <b>-</b> 6   | FOSA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 13252-13-6                   | HFPO <b>-</b> DA    | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 2355-31-9                    | N-MeFOSAA           | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC-800PF<br>AS |
| 375-22-4                     | PFBA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 73 <b>-</b> 5   | PFBS                | 35      | U                   | ng/L  | 35  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 335=76=2                     | PFDA                | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 307-55-1                     | PFDoA               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 335=77=3                     | PFDS                | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC-800PF<br>AS |
| 375-85-9                     | PFHpA               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC-800PF<br>AS |
| 307-24-4                     | PFHxA               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC-800PF<br>AS |
| 355-46-4                     | PFHxS               | 36      | U, J, QL <b>-</b> 1 | ng/L  | 36  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 95-1            | PFNA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC-800PF<br>AS |
| 68259-12-1                   | PFNS                | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |
| 335=67=1                     | PFOA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC-800PF<br>AS |
| 1763-23-1                    | PFOS                | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC-800PF<br>AS |
| 2706-90-3                    | PFPeA               | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS |

E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 1-EPA Trip Blank AMU

Lab ID: E200304-05

Station ID: Matrix: Trip Blank - Water

Date Collected: 1/16/20 9:00

| CAS<br>Number | Analyte | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
|---------------|---------|--------------------|-------|-----|-----------------|------------------|----------------------------------|
| 2706-91-4     | PFPeS   | 38 U, J, QL-1      | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS              |
| 72629-94-8    | PFTrDA  | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8     | PFUdA   | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:27 | ASBPROC=800PF<br>AS              |

Page 14 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Lab ID: <u>E200304-06</u> Sample ID: <u>1-EPA Trip Blank FMU</u> **Station ID:** Matrix: Trip Blank - Water

Date Collected: 1/16/20 9:00

| CAS<br>Number                | Analyte   | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method                           |
|------------------------------|-----------|---------|---------------------|-------|-----|-----------------|------------------|----------------------------------|
| 757124-72-4                  | 4:2FTS    | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 27619-97-2                   | 6:2FTS    | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC <del>-</del> 800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS    | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 754 <b>-</b> 91 <b>-</b> 6   | FOSA      | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 13252-13-6                   | HFPO-DA   | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 2355=31=9                    | N-MeFOSAA | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC-800PF<br>AS              |
| 375-22-4                     | PFBA      | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 375-73-5                     | PFBS      | 35      | U                   | ng/L  | 35  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 335-76-2                     | PFDA      | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 307-55-1                     | PFDoA     | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 335 <b>-</b> 77 <b>-</b> 3   | PFDS      | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC-800PF<br>AS              |
| 375-85-9                     | PFHpA     | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS     | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC-800PF<br>AS              |
| 307-24-4                     | PFHxA     | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC-800PF<br>AS              |
| 355-46-4                     | PFHxS     | 36      | U, J, QL-1          | ng/L  | 36  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1   | PFNA      | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC-800PF<br>AS              |
| 58259-12-1                   | PFNS      | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 335-67-1                     | PFOA      | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC-800PF<br>AS              |
| 1763-23-1                    | PFOS      | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC-800PF<br>AS              |
| 2706-90-3                    | PFPeA     | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |

E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 1-EPA Trip Blank FMU

Lab ID: E200304-06

Station ID: Matrix: Trip Blank - Water

Date Collected: 1/16/20 9:00

|                              | ceteu. 1/10/20 7.00 |                    |       |     |                 |                  |                                  |
|------------------------------|---------------------|--------------------|-------|-----|-----------------|------------------|----------------------------------|
| CAS<br>Number                | Analyte             | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
| 2706-91-4                    | PFPeS               | 38 U, J, QL-1      | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |
| 72629 <b>-</b> 94 <b>-</b> 8 | PFTrDA              | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8                    | PFUdA               | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>21:50 | ASBPROC=800PF<br>AS              |

Page 16 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Lab ID: <u>E200304-07</u> Sample ID: 3-Influent Decontamination Blank

**Station ID:** Matrix: Equipment Rinse Blank

Date Collected: 1/16/20 11:42

|                              | ecteu: 1/16/20 11:42 |         |                     |       |     |                 |                  |                                  |
|------------------------------|----------------------|---------|---------------------|-------|-----|-----------------|------------------|----------------------------------|
| CAS<br>Number                | Analyte              | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method                           |
| 757124-72-4                  | 4:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 27619-97-2                   | 6:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS               | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC=800PF<br>AS              |
| 754 <b>-</b> 91 <b>-</b> 6   | FOSA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 13252-13-6                   | HFPO <b>-</b> DA     | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 2355=31=9                    | N <b>-</b> MeFOSAA   | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC-800PF<br>AS              |
| 375-22-4                     | PFBA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 73 <b>-</b> 5   | PFBS                 | 36      | U                   | ng/L  | 36  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 335 <b>-</b> 76 <b>-</b> 2   | PFDA                 | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 307-55-1                     | PFDoA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 335=77=3                     | PFDS                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC-800PF<br>AS              |
| 375-85-9                     | PFHpA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS                | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC-800PF<br>AS              |
| 307-24-4                     | PFHxA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC-800PF<br>AS              |
| 355-46-4                     | PFHxS                | 37      | U, J, QL <b>-</b> 1 | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1   | PFNA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC-800PF<br>AS              |
| 68259-12-1                   | PFNS                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC=800PF<br>AS              |
| 335 <b>-</b> 67 <b>-</b> 1   | PFOA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC-800PF<br>AS              |
| 1763-23-1                    | PFOS                 | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 2706-90-3                    | PFPeA                | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |

E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 3-Influent Decontamination Blank Lab ID: E200304-07

Station ID: Matrix: Equipment Rinse Blank

Date Collected: 1/16/20 11:42

| CAS        |         |                    |       |     |                 |                  |                                  |
|------------|---------|--------------------|-------|-----|-----------------|------------------|----------------------------------|
| Number     | Analyte | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
| 2706-91-4  | PFPeS   | 38 U, J, QL-1      | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC=800PF<br>AS              |
| 72629-94-8 | PFTrDA  | 40 <mark>U</mark>  | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8  | PFUdA   | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:13 | ASBPROC <del>-</del> 800PF<br>AS |

Page 18 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 6-POTW Field Blank

Station ID:

Lab ID: E200304-08

Matrix: Field Blank

Date Collected: 1/16/20 11:56

|                              | ecteu: 1/10/20 11:50 |         |                     |       |     |                 |                  |                                  |
|------------------------------|----------------------|---------|---------------------|-------|-----|-----------------|------------------|----------------------------------|
| CAS<br>Number                | Analyte              | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method                           |
| 757124-72-4                  | 4:2FTS               | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC=800PF<br>AS              |
| 27619 <b>-</b> 97 <b>-</b> 2 | 6:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC <del>-</del> 800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC=800PF<br>AS              |
| 754 <b>-</b> 91-6            | FOSA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC=800PF<br>AS              |
| 13252-13-6                   | HFPO•DA              | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC=800PF<br>AS              |
| 2355-31-9                    | N-MeFOSAA            | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 375-22-4                     | PFBA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC=800PF<br>AS              |
| 375 <b>-</b> 73 <b>-</b> 5   | PFBS                 | 35      | U                   | ng/L  | 35  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC=800PF<br>AS              |
| 335=76=2                     | PFDA                 | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 307-55-1                     | PFDoA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC=800PF<br>AS              |
| 335=77=3                     | PFDS                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 375-85-9                     | РҒНрА                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC•800PF<br>AS              |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS                | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 307-24-4                     | PFHxA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 355-46-4                     | PFHxS                | 36      | U, J, QL <b>-</b> 1 | ng/L  | 36  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 375 <b>-</b> 95-1            | PFNA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 68259-12-1                   | PFNS                 | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 335 <b>-</b> 67 <b>-</b> 1   | PFOA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 1763-23-1                    | PFOS                 | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |
| 2706-90-3                    | PFPeA                | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC-800PF<br>AS              |

Page 19 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 6-POTW Field Blank

Station ID:

Lab ID: E200304-08

Matrix: Field Blank

Date Collected: 1/16/20 11:56

| CAS<br>Number                | Analyte | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
|------------------------------|---------|--------------------|-------|-----|-----------------|------------------|----------------------------------|
| 2706-91-4                    | PFPeS   | 38 U, J, QL-1      | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC=800PF<br>AS              |
| 72629 <b>-</b> 94 <b>-</b> 8 | PFTrDA  | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8                    | PFUdA   | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:36 | ASBPROC=800PF<br>AS              |

Page 20 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Lab ID: <u>E200304-09</u> Sample ID: 9-Downstream Field Blank **Station ID:** Matrix: Field Blank

Date Collected: 1/16/20 12:30

| CAS<br>Number                | Analyte          | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method                           |
|------------------------------|------------------|---------|---------------------|-------|-----|-----------------|------------------|----------------------------------|
| 757124-72-4                  | 4:2FTS           | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 27619-97-2                   | 6:2FTS           | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS           | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 754 <b>-</b> 91 <b>-</b> 6   | FOSA             | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 13252-13-6                   | HFPO <b>-</b> DA | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 2355-31-9                    | N-MeFOSAA        | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC-800PF<br>AS              |
| 375-22-4                     | PFBA             | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 375=73=5                     | PFBS             | 35      | U                   | ng/L  | 35  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 335=76=2                     | PFDA             | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 307-55-1                     | PFDoA            | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 335 <b>-</b> 77 <b>-</b> 3   | PFDS             | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC-800PF<br>AS              |
| 375-85-9                     | РҒНрА            | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS            | 38      | U, J, QS <b>-</b> 3 | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC-800PF<br>AS              |
| 307-24-4                     | PFHxA            | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC-800PF<br>AS              |
| 355-46-4                     | PFHxS            |         | U, J, QL-1,<br>QS-3 | ng/L  | 36  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1   | PFNA             | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC-800PF<br>AS              |
| 68259-12-1                   | PFNS             | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC-800PF<br>AS              |
| 335-67-1                     | PFOA             | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC-800PF<br>AS              |
| 1763-23-1                    | PFOS             | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS              |
| 2706-90-3                    | PFPeA            | 40      | U, J, QS-3          | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC-800PF<br>AS              |

E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 9-Downstream Field Blank
Lab ID: E200304-09
Station ID: Matrix: Field Blank

Date Collected: 1/16/20 12:30

| CAS<br>Number | Analyte | Results | Qualifiers Units         | MRL | Prepared        | Analyzed         | Method              |
|---------------|---------|---------|--------------------------|-----|-----------------|------------------|---------------------|
| 2706=91=4     | PFPeS   |         | U, J, QL-1, ng/L<br>QS-3 | 37  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS |
| 72629-94-8    | PFTrDA  | 40      | U ng/L                   | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS |
| 2058-94-8     | PFUdA   | 40      | U ng/L                   | 40  | 1/24/20<br>9:47 | 1/24/20<br>22:59 | ASBPROC=800PF<br>AS |

Page 22 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Lab ID: <u>E200304-10</u> Sample ID: 10-Lake Nottely (Intake) Station ID: <u>DOWNSTREAM OF POTW (MEEKS PARK)</u> Matrix: Surface Water

Date Collected: 1/16/20 13:40

| CAS<br>Number              | Analyte   | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
|----------------------------|-----------|--------------------|-------|-----|-----------------|------------------|----------------------------------|
| 757124-72-4                | 4:2FTS    | 37 U               | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 27619-97-2                 | 6:2FTS    | 38 <mark>U</mark>  | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 39108-34-4                 | 8:2FTS    | 38 U               | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 754 <b>-</b> 91 <b>-</b> 6 | FOSA      | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 13252-13-6                 | HFPO-DA   | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 2355-31-9                  | N-MeFOSAA | 160 <mark>U</mark> | ng/L  | 160 | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC <b>-</b> 800PF<br>AS     |
| 375-22-4                   | PFBA      | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC <del>-</del> 800PF<br>AS |
| 375-73-5                   | PFBS      | 35 U               | ng/L  | 35  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 335=76=2                   | PFDA      | 160 <mark>U</mark> | ng/L  | 160 | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 307-55-1                   | PFDoA     | 40 <mark>U</mark>  | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 335 <b>-</b> 77 <b>-</b> 3 | PFDS      | 39 U               | ng/L  | 39  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC-800PF<br>AS              |
| 375-85-9                   | PFHpA     | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC <del>-</del> 800PF<br>AS |
| 375-92-8                   | PFHpS     | 38 U               | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC-800PF<br>AS              |
| 307-24-4                   | PFHxA     | 40 <mark>U</mark>  | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC-800PF<br>AS              |
| 355-46-4                   | PFHxS     | 37 U, J, QL-1      | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 375=95=1                   | PFNA      | 40 <mark>U</mark>  | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC-800PF<br>AS              |
| 68259-12-1                 | PFNS      | 38 U               | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 335-67-1                   | PFOA      | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC-800PF<br>AS              |
| 1763-23-1                  | PFOS      | 37 U               | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC <b>-</b> 800PF<br>AS     |
| 2706-90-3                  | PFPeA     | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |

E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 10-Lake Nottely (Intake)

Station ID: DOWNSTREAM OF POTW (MEEKS PARK)

Matrix: Surface Water

Date Collected: 1/16/20 13:40

| CAS<br>Number                | Analyte | Results | Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
|------------------------------|---------|---------|------------|-------|-----|-----------------|------------------|----------------------------------|
| 2706-91-4                    | PFPeS   | 38      | U, J, QL-1 | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |
| 72629 <b>-</b> 94 <b>-</b> 8 | PFTrDA  | 40      | U          | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8                    | PFUdA   | 40      | U          | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:00 | ASBPROC=800PF<br>AS              |

Page 24 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: <u>8-Downstream of POTW (Meeks Park)</u>
Lab ID: <u>E200304-11</u>
Station ID: <u>DOWNSTREAM OF POTW (MEEKS PARK)</u>
Matrix: Surface Water

Date Collected: 1/16/20 12:25

| CAS<br>Number              | Analyte   | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                       |
|----------------------------|-----------|--------------------|-------|-----|-----------------|------------------|------------------------------|
| 757124-72-4                | 4:2FTS    | 37 U               | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 27619-97-2                 | 6:2FTS    | 38 U               | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 39108-34-4                 | 8:2FTS    | 38 <b>U</b>        | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 754 <b>-</b> 91-6          | FOSA      | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 13252-13-6                 | HFPO-DA   | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 2355-31-9                  | N-MeFOSAA | 160 U              | ng/L  | 160 | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC-800PF<br>AS          |
| 375-22-4                   | PFBA      | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 375-73-5                   | PFBS      | 35 <b>U</b>        | ng/L  | 35  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 335 <b>-</b> 76 <b>-</b> 2 | PFDA      | 160 <b>U</b>       | ng/L  | 160 | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 307-55-1                   | PFDoA     | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 335 <b>-</b> 77 <b>-</b> 3 | PFDS      | 39 <b>U</b>        | ng/L  | 39  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC-800PF<br>AS          |
| 375-85-9                   | PFHpA     | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 375 <b>-</b> 92 <b>-</b> 8 | PFHpS     | 38 <mark>U</mark>  | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC-800PF<br>AS          |
| 307-24-4                   | PFHxA     | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC-800PF<br>AS          |
| 355-46-4                   | PFHxS     | 37 U, J, QL-1      | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 375-95-1                   | PFNA      | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC-800PF<br>AS          |
| 68259-12-1                 | PFNS      | 38 U               | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 335-67-1                   | PFOA      | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC-800PF<br>AS          |
| 1763-23-1                  | PFOS      | 37 U               | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC <b>-</b> 800PF<br>AS |
| 2706-90-3                  | PFPeA     | 40 <mark>U</mark>  | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |

Page 25 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: <u>8-Downstream of POTW (Meeks Park)</u>
Lab ID: <u>E200304-11</u>
Station ID: <u>DOWNSTREAM OF POTW (MEEKS PARK)</u>
Matrix: Surface Water

Date Collected: 1/16/20 12:25

|                              | ceted: 1/10/20 12:25 |           |                  |     |                 |                  |                              |
|------------------------------|----------------------|-----------|------------------|-----|-----------------|------------------|------------------------------|
| CAS<br>Number                | Analyte              | Results ( | Qualifiers Units | MRL | Prepared        | Analyzed         | Method                       |
| 2706-91-4                    | PFPeS                | 38 U      | U, J, QL-1 ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |
| 72629 <b>-</b> 94 <b>-</b> 8 | PFTrDA               | 40 U      | U ng/L           | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC <b>-</b> 800PF<br>AS |
| 2058-94-8                    | PFUdA                | 40 U      | U ng/L           | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:23 | ASBPROC=800PF<br>AS          |

Page 26 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Lab ID: <u>E200304-12</u> Sample ID: <u>15-EPD Lab DI Water</u>

Station ID: EPD LAB WATER Matrix: Organic Free Water Blank

Date Collected: 1/16/20 8:35

| Dute con                     | ecteu: 1/16/20 8:55 |         |                     |       |     |                 |                  |                     |
|------------------------------|---------------------|---------|---------------------|-------|-----|-----------------|------------------|---------------------|
| CAS<br>Number                | Analyte             | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method              |
| 757124-72-4                  | 4:2FTS              | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 27619-97-2                   | 6:2FTS              | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS              | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 754 <b>-</b> 91 <b>-</b> 6   | FOSA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 13252-13-6                   | HFPO <b>-</b> DA    | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 2355-31-9                    | N-MeFOSAA           | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC-800PF<br>AS |
| 375-22-4                     | PFBA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 73 <b>-</b> 5   | PFBS                | 36      | U                   | ng/L  | 36  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 335=76=2                     | PFDA                | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 307-55-1                     | PFDoA               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 335=77=3                     | PFDS                | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC-800PF<br>AS |
| 375-85-9                     | РҒНрА               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC-800PF<br>AS |
| 307-24-4                     | PFHxA               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC-800PF<br>AS |
| 355-46-4                     | PFHxS               | 37      | U, J, QL <b>-</b> 1 | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 95-1            | PFNA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC-800PF<br>AS |
| 68259-12-1                   | PFNS                | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |
| 335=67=1                     | PFOA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC-800PF<br>AS |
| 1763-23-1                    | PFOS                | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC-800PF<br>AS |
| 2706-90-3                    | PFPeA               | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS |

E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 15-EPD Lab DI Water Lab ID: E200304-12

Station ID: EPD LAB WATER Matrix: Organic Free Water Blank

Date Collected: 1/16/20 8:35

| CAS<br>Number | Analyte | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
|---------------|---------|--------------------|-------|-----|-----------------|------------------|----------------------------------|
| 2706-91-4     | PFPeS   | 38 U, J, QL-1      | ng/L  | 38  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS              |
| 72629-94-8    | PFTrDA  | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058=94=8     | PFUdA   | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/24/20<br>23:22 | ASBPROC=800PF<br>AS              |

Page 28 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 13-Finished Water (Notla Treatment Plant) Lab ID: E200304-13
Station ID: FINISHED WATER (NOTLA TREATMENT F Matrix: Potable Water

Date Collected: 1/16/20 13:46

|                            | ecteu: 1/10/20 15:40 |           |                          |     |                 |                 |                                  |
|----------------------------|----------------------|-----------|--------------------------|-----|-----------------|-----------------|----------------------------------|
| CAS<br>Number              | Analyte              | Results Q | Qualifiers Units         | MRL | Prepared        | Analyzed        | Method                           |
| 757124-72-4                | 4:2FTS               | 38 U      | J, J, QS-3 ng/L          | 38  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 27619-97-2                 | 6:2FTS               | 38 U      | ng/L                     | 38  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 39108=34=4                 | 8:2FTS               | 39 U      | ng/L                     | 39  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 754 <b>-</b> 91 <b>-</b> 6 | FOSA                 | 40 U      | r, J, QM <b>-</b> 1 ng/L | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 13252-13-6                 | HFPO <b>-</b> DA     | 40 U      | ng/L                     | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 2355-31-9                  | N-MeFOSAA            | 160 U     | ng/L                     | 160 | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 375-22-4                   | PFBA                 | 40 U      | I, J, QS <b>-</b> 3 ng/L | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 73 <b>-</b> 5 | PFBS                 | 36 U      | r, J, QS <b>-</b> 3 ng/L | 36  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 335 <b>-</b> 76 <b>-</b> 2 | PFDA                 | 160 U     | ng/L                     | 160 | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 307-55-1                   | PFDoA                | 40 U      | ng/L                     | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 335=77=3                   | PFDS                 | 39 U      | ng/L                     | 39  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC-800PF<br>AS              |
| 375-85-9                   | PFHpA                | 40 U      | ng/L                     | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 92 <b>-</b> 8 | PFHpS                | 38 U      | ng/L                     | 38  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC-800PF<br>AS              |
| 307-24-4                   | PFHxA                | 40 U      | ng/L                     | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC-800PF<br>AS              |
| 355-46-4                   | PFHxS                | 37 U      | I, J, QL <b>-</b> 1 ng/L | 37  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1 | PFNA                 | 40 U      | ng/L                     | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC-800PF<br>AS              |
| 68259-12-1                 | PFNS                 | 39 U      | ng/L                     | 39  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |
| 335=67=1                   | PFOA                 | 40 U      | ng/L                     | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC-800PF<br>AS              |
| 1763-23-1                  | PFOS                 | 37 U      | ng/L                     | 37  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC-800PF<br>AS              |
| 2706-90-3                  | PFPeA                | 40 U      | ng/L                     | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <del>-</del> 800PF<br>AS |

Page 29 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 13-Finished Water (Notla Treatment Plant) Lab ID: E200304-13
Station ID: FINISHED WATER (NOTLA TREATMENT F Matrix: Potable Water

Date Collected: 1/16/20 13:46

| CAS                          |         |         |                     |       |     |                 |                 |                              |
|------------------------------|---------|---------|---------------------|-------|-----|-----------------|-----------------|------------------------------|
| Number                       | Analyte | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed        | Method                       |
| 2706=91=4                    | PFPeS   | 38      | U, J, QL-1,<br>QM-1 | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <b>-</b> 800PF<br>AS |
| 72629 <b>-</b> 94 <b>-</b> 8 | PFTrDA  | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC=800PF<br>AS          |
| 2058-94-8                    | PFUdA   | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>0:53 | ASBPROC <b>-</b> 800PF<br>AS |

Page 30 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 4-Landfill Leachate Lab ID: E200304-14
Station ID: LANDFILL LEACHATE Matrix: Leachate Water

Date Collected: 1/16/20 11:45

| CAS<br>Number                 | Analyte   | Results | Qualifiers       | Units | MRL | Prepared        | Analyzed         | Method              |
|-------------------------------|-----------|---------|------------------|-------|-----|-----------------|------------------|---------------------|
| 757124 <b>-</b> 72 <b>-</b> 4 | 4:2FTS    | 37      | U                | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 27619-97-2                    | 6:2FTS    | 290     | J, Q <b>-</b> 2  | ng/L  | 380 | 1/24/20<br>9:47 | 1/27/20<br>15:46 | ASBPROC=800PF<br>AS |
| 39108-34-4                    | 8:2FTS    | 38      | U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 754 <b>-</b> 91 <b>-</b> 6    | FOSA      | 40      | U                | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 13252-13-6                    | HFPO•DA   | 40      | U                | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 2355-31-9                     | N-MeFOSAA | 160     | U                | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC-800PF<br>AS |
| 375-22-4                      | PFBA      | 810     | J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 73 <b>-</b> 5    | PFBS      | 9000    | J, QS <b>-</b> 3 | ng/L  | 350 | 1/24/20<br>9:47 | 1/27/20<br>15:46 | ASBPROC=800PF<br>AS |
| 335 <b>-</b> 76 <b>-</b> 2    | PFDA      | 160     | U                | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 307-55-1                      | PFDoA     | 40      | U                | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 335 <b>-</b> 77 <b>-</b> 3    | PFDS      | 39      | U                | ng/L  | 39  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC-800PF<br>AS |
| 375-85-9                      | PFHpA     | 480     |                  | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 92 <b>-</b> 8    | PFHpS     | 38      | U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC-800PF<br>AS |
| 307-24-4                      | PFHxA     | 5300    |                  | ng/L  | 400 | 1/24/20<br>9:47 | 1/27/20<br>15:46 | ASBPROC-800PF<br>AS |
| 355-46-4                      | PFHxS     | 360     | J, QL <b>-</b> 1 | ng/L  | 36  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1    | PFNA      | 100     |                  | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC-800PF<br>AS |
| 68259-12-1                    | PFNS      | 38      | U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC=800PF<br>AS |
| 335-67-1                      | PFOA      | 1300    |                  | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC-800PF<br>AS |
| 1763-23-1                     | PFOS      | 150     |                  | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>3:11  | ASBPROC-800PF<br>AS |
| 2706-90-3                     | PFPeA     | 750     |                  | ng/L  | 400 | 1/24/20<br>9:47 | 1/27/20<br>15:46 | ASBPROC=800PF<br>AS |

Page 31 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 4-Landfill Leachate Lab ID: E200304-14
Station ID: LANDFILL LEACHATE Matrix: Leachate Water

Date Collected: 1/16/20 11:45

| CAS<br>Number | Analyte | Results | Qualifiers | Units | MRL | Prepared        | Analyzed        | Method              |
|---------------|---------|---------|------------|-------|-----|-----------------|-----------------|---------------------|
| 2706-91-4     | PFPeS   | 38      | U, J, QL-1 | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>3:11 | ASBPROC=800PF<br>AS |
| 72629-94-8    | PFTrDA  | 40      | U          | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>3:11 | ASBPROC=800PF<br>AS |
| 2058-94-8     | PFUdA   | 40      | U          | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>3:11 | ASBPROC=800PF<br>AS |

Page 32 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: <u>5-POTW Effluent</u>

Station ID: <u>POTW EFFLUENT</u>

Lab ID: <u>E200304-15</u>

Matrix: Wastewater

Date Collected: 1/16/20 11:53

| CAS<br>Number              | Analyte   | Results Qualifiers  | Units | MRL | Prepared        | Analyzed        | Method              |
|----------------------------|-----------|---------------------|-------|-----|-----------------|-----------------|---------------------|
| 757124-72-4                | 4:2FTS    | 37 U, J, QS-3       | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 27619-97-2                 | 6:2FTS    | 38 U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 39108-34-4                 | 8:2FTS    | 38 U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 754 <b>-</b> 91-6          | FOSA      | 40 U                | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 13252-13-6                 | HFPO-DA   | 40 U                | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 2355-31-9                  | N-MeFOSAA | 160 U               | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC-800PF<br>AS |
| 375-22-4                   | PFBA      | 41 J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 375-73-5                   | PFBS      | 200                 | ng/L  | 35  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 335 <b>-</b> 76 <b>-</b> 2 | PFDA      | 160 U               | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 307-55-1                   | PFDoA     | 40 U                | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 335 <b>-</b> 77 <b>-</b> 3 | PFDS      | 38 U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC-800PF<br>AS |
| 375-85-9                   | PFHpA     | 15 J, Q <b>-</b> 2  | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 92 <b>-</b> 8 | PFHpS     | 38 U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC-800PF<br>AS |
| 307-24-4                   | PFHxA     | 130                 | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC-800PF<br>AS |
| 355-46-4                   | PFHxS     | 36 U, J, QL-1       | ng/L  | 36  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1 | PFNA      | 40 U                | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC-800PF<br>AS |
| 68259-12-1                 | PFNS      | 38 U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |
| 335-67-1                   | PFOA      | 37 J, Q <b>-</b> 2  | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC-800PF<br>AS |
| 1763-23-1                  | PFOS      | 37 U                | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC-800PF<br>AS |
| 2706-90-3                  | PFPeA     | 38 J, Q-2, QS-3     | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS |

Page 33 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: <u>5-POTW Effluent</u>

Station ID: <u>POTW EFFLUENT</u>

Lab ID: <u>E200304-15</u>

Matrix: Wastewater

Date Collected: 1/16/20 11:53

| CAS<br>Number | Analyte | Results | Qualifiers Un | its MRL | Prepared        | Analyzed        | Method                           |
|---------------|---------|---------|---------------|---------|-----------------|-----------------|----------------------------------|
| 2706-91-4     | PFPeS   | 37      | U, J, QL-1 n  | g/L 37  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC=800PF<br>AS              |
| 72629-94-8    | PFTrDA  | 40      | U n           | g/L 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8     | PFUdA   | 40      | U             | g/L 40  | 1/24/20<br>9:47 | 1/25/20<br>1:16 | ASBPROC <del>-</del> 800PF<br>AS |

Page 34 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: <u>5-POTW Effluent (Dup)</u>

Station ID: <u>POTW EFFLUENT</u>

Lab ID: <u>E200304-16</u>

Matrix: Wastewater

Date Collected: 1/16/20 11:54

| CAS                        | ected: 1/16/20 11:54 |                     |       |     |                 |                 |                                  |
|----------------------------|----------------------|---------------------|-------|-----|-----------------|-----------------|----------------------------------|
| Number                     | Analyte              | Results Qualifiers  | Units | MRL | Prepared        | Analyzed        | Method                           |
| 757124-72-4                | 4:2FTS               | 37 U, J, QS-3       | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS              |
| 27619-97-2                 | 6:2FTS               | 38 U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS              |
| 39108-34-4                 | 8:2FTS               | 38 <mark>U</mark>   | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC <del>-</del> 800PF<br>AS |
| 754 <b>-</b> 91 <b>-</b> 6 | FOSA                 | 40 <mark>U</mark>   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS              |
| 13252-13-6                 | HFPO•DA              | 40 <mark>U</mark>   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS              |
| 2355=31=9                  | N <b>-</b> MeFOSAA   | 160 <mark>U</mark>  | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 375-22-4                   | PFBA                 | 44 J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS              |
| 375-73-5                   | PFBS                 | 210 J, QS-3         | ng/L  | 35  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 335-76-2                   | PFDA                 | 160 U               | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 307-55-1                   | PFDoA                | 40 U                | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS              |
| 335 <b>-</b> 77 <b>-</b> 3 | PFDS                 | 38 U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 375-85-9                   | РҒНрА                | 22 J, Q <b>-</b> 2  | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC•800PF<br>AS              |
| 375 <b>-</b> 92 <b>-</b> 8 | PFHpS                | 38 U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 307-24-4                   | PFHxA                | 150                 | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 355-46-4                   | PFHxS                | 20 J, Q-2, QL-1     | ng/L  | 36  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS              |
| 375-95-1                   | PFNA                 | 40 U                | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 68259-12-1                 | PFNS                 | 38 U                | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 335-67-1                   | PFOA                 | 98                  | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 1763-23-1                  | PFOS                 | 21 J, Q-2           | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |
| 2706-90-3                  | PFPeA                | 41 J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC-800PF<br>AS              |

Page 35 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: <u>5-POTW Effluent (Dup)</u>

Station ID: <u>POTW EFFLUENT</u>

Lab ID: <u>E200304-16</u>

Matrix: Wastewater

Date Collected: 1/16/20 11:54

| CAS        |         |         |                     |       |     |                 |                 |                     |
|------------|---------|---------|---------------------|-------|-----|-----------------|-----------------|---------------------|
| Number     | Analyte | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed        | Method              |
| 2706-91-4  | PFPeS   | 37      | U, J, QL <b>-</b> 1 | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS |
| 72629-94-8 | PFTrDA  | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS |
| 2058-94-8  | PFUdA   | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>1:39 | ASBPROC=800PF<br>AS |

Page 36 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Lab ID: <u>E200304-17</u> Sample ID: 2-POTW Influent **Station ID: POTW INFLUENT** Matrix: Wastewater

Date Collected: 1/16/20 11:35

|                              | ecteu: 1/16/20 11:55 |         |                     |       |     |                 |                 |                                  |
|------------------------------|----------------------|---------|---------------------|-------|-----|-----------------|-----------------|----------------------------------|
| CAS<br>Number                | Analyte              | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed        | Method                           |
| 757124-72-4                  | 4:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 27619-97-2                   | 6:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC <del>-</del> 800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS               | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 754 <b>-</b> 91 <b>-</b> 6   | FOSA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 13252-13-6                   | HFPO•DA              | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 2355-31-9                    | N-MeFOSAA            | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC-800PF<br>AS              |
| 375-22-4                     | PFBA                 | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 375-73-5                     | PFBS                 | 36      | U, J, QS <b>-</b> 3 | ng/L  | 36  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 335 <b>-</b> 76 <b>-</b> 2   | PFDA                 | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 307-55-1                     | PFDoA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 335=77=3                     | PFDS                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC-800PF<br>AS              |
| 375-85-9                     | РҒНрА                | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 375 <b>-</b> 92 <b>-</b> 8   | PFHpS                | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC-800PF<br>AS              |
| 307-24-4                     | PFHxA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC-800PF<br>AS              |
| 355-46-4                     | PFHxS                | 37      | U, J, QL <b>-</b> 1 | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 375 <b>-</b> 95 <b>-</b> 1   | PFNA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC-800PF<br>AS              |
| 68259-12-1                   | PFNS                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 335 <b>-</b> 67 <b>-</b> 1   | PFOA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC-800PF<br>AS              |
| 1763-23-1                    | PFOS                 | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC-800PF<br>AS              |
| 2706-90-3                    | PFPeA                | 36      | J, Q-2, QS-3        | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 2-POTW Influent Lab ID: E200304-17
Station ID: POTW INFLUENT Matrix: Wastewater

Date Collected: 1/16/20 11:35

| Date Con      | ecteu: 1/10/20 11:33 |         |                     |       |     |                 |                 |                                  |
|---------------|----------------------|---------|---------------------|-------|-----|-----------------|-----------------|----------------------------------|
| CAS<br>Number | Analyte              | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed        | Method                           |
| 2706-91-4     | PFPeS                | 38      | U, J, QL <b>-</b> 1 | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC=800PF<br>AS              |
| 72629-94-8    | PFTrDA               | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8     | PFUdA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:02 | ASBPROC <del>-</del> 800PF<br>AS |

Page 38 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 12-Raw Water (Notla Treatment Plant)

Station ID: RAW WATER (NOTLA TREATMENT PLAN)

Matrix: Potable Water

Date Collected: 1/16/20 13:45

|                              | ecteu: 1/10/20 15:45 |         |                     |       |     |                 |                 |                                  |
|------------------------------|----------------------|---------|---------------------|-------|-----|-----------------|-----------------|----------------------------------|
| CAS<br>Number                | Analyte              | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed        | Method                           |
| 757124-72-4                  | 4:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 27619-97-2                   | 6:2FTS               | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 39108 <b>-</b> 34 <b>-</b> 4 | 8:2FTS               | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC=800PF<br>AS              |
| 754 <b>-</b> 91 <b>-</b> 6   | FOSA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC=800PF<br>AS              |
| 13252-13-6                   | HFPO•DA              | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 2355=31=9                    | N <b>-</b> MeFOSAA   | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 375-22-4                     | PFBA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 375-73-5                     | PFBS                 | 36      | U                   | ng/L  | 36  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 335-76-2                     | PFDA                 | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 307-55-1                     | PFDoA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 335-77-3                     | PFDS                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC-800PF<br>AS              |
| 375-85-9                     | PFHpA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 375-92-8                     | PFHpS                | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC-800PF<br>AS              |
| 307-24-4                     | PFHxA                | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 355-46-4                     | PFHxS                | 37      | U, J, QL <b>-</b> 1 | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1   | PFNA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC-800PF<br>AS              |
| 68259-12-1                   | PFNS                 | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 335-67-1                     | PFOA                 | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC-800PF<br>AS              |
| 1763-23-1                    | PFOS                 | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 2706-90-3                    | PFPeA                | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |

Page 39 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 12-Raw Water (Notla Treatment Plant)

Station ID: RAW WATER (NOTLA TREATMENT PLAN)

Matrix: Potable Water

Date Collected: 1/16/20 13:45

| CAS<br>Number                | Analyte | Results Qualifiers | Units | MRL | Prepared        | Analyzed        | Method                           |
|------------------------------|---------|--------------------|-------|-----|-----------------|-----------------|----------------------------------|
| 2706-91-4                    | PFPeS   | 38 U, J, QL-1      | ng/L  | 38  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC=800PF<br>AS              |
| 72629 <b>-</b> 94 <b>-</b> 8 | PFTrDA  | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8                    | PFUdA   | 40 U               | ng/L  | 40  | 1/24/20<br>9:47 | 1/25/20<br>2:25 | ASBPROC=800PF<br>AS              |

Page 40 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Lab ID: <u>E200304-19</u> Sample ID: 7-Upstream of POTW (US HWY 19) Station ID: <u>UPSTREAM OF POTW (US HWY 19)</u> Matrix: Surface Water

Date Collected: 1/16/20 11:42

| CAS<br>Number              | Analyte          | Results | Qualifiers          | Units | MRL | Prepared        | Analyzed         | Method                           |
|----------------------------|------------------|---------|---------------------|-------|-----|-----------------|------------------|----------------------------------|
| 757124-72-4                | 4:2FTS           | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 27619-97-2                 | 6:2FTS           | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 39108-34-4                 | 8:2FTS           | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 754-91-6                   | FOSA             | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 13252-13-6                 | HFPO <b>-</b> DA | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 2355-31-9                  | N-MeFOSAA        | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <b>-</b> 800PF<br>AS     |
| 375-22-4                   | PFBA             | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 73 <b>-</b> 5 | PFBS             | 36      | U, J, QS <b>-</b> 3 | ng/L  | 36  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 335 <b>-</b> 76 <b>-</b> 2 | PFDA             | 160     | U                   | ng/L  | 160 | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 307-55-1                   | PFDoA            | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 335 <b>-</b> 77 <b>-</b> 3 | PFDS             | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC-800PF<br>AS              |
| 375-85-9                   | PFHpA            | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 375-92-8                   | PFHpS            | 38      | U                   | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC-800PF<br>AS              |
| 307-24-4                   | PFHxA            | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <b>-</b> 800PF<br>AS     |
| 355-46-4                   | PFHxS            | 37      | U, J, QL <b>-</b> 1 | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 375 <b>-</b> 95 <b>-</b> 1 | PFNA             | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC-800PF<br>AS              |
| 68259-12-1                 | PFNS             | 39      | U                   | ng/L  | 39  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC=800PF<br>AS              |
| 335-67-1                   | PFOA             | 40      | U                   | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC-800PF<br>AS              |
| 1763-23-1                  | PFOS             | 37      | U                   | ng/L  | 37  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 2706-90-3                  | PFPeA            | 40      | U, J, QS <b>-</b> 3 | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC=800PF<br>AS              |



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# **Semi Volatile Organics**

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA

Sample ID: 7-Upstream of POTW (US HWY 19)

Station ID: UPSTREAM OF POTW (US HWY 19)

Matrix: Surface Water

Date Collected: 1/16/20 11:42

| CAS        |         |                    |       |     |                 |                  |                                  |
|------------|---------|--------------------|-------|-----|-----------------|------------------|----------------------------------|
| Number     | Analyte | Results Qualifiers | Units | MRL | Prepared        | Analyzed         | Method                           |
| 2706-91-4  | PFPeS   | 38 U, J, QL-1      | ng/L  | 38  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC=800PF<br>AS              |
| 72629-94-8 | PFTrDA  | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |
| 2058-94-8  | PFUdA   | 40 <b>U</b>        | ng/L  | 40  | 1/24/20<br>9:47 | 1/31/20<br>14:46 | ASBPROC <del>-</del> 800PF<br>AS |

Page 42 of 52 E200304 SVOA FINAL 02 19 20 1050 2/19/20 10:50



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Semi Volatile Organics (SVOA) - Quality Control **US-EPA**, Region 4, LSASD

Spike

Source

%REC

RPD

Reporting

| Analyte               | Result | Limit   | Units | Level      | Result      | %REC     | Limits | RPD | Limit | Notes            |
|-----------------------|--------|---------|-------|------------|-------------|----------|--------|-----|-------|------------------|
| Batch 2001023 - S PFC |        |         |       |            |             |          |        |     |       |                  |
| Blank (2001023-BLK1)  |        |         |       | Prepared & | & Analyzed: | 01/24/20 |        |     |       |                  |
| ASBPROC-800PFAS       |        | <u></u> |       | ·          |             |          |        |     |       |                  |
| 4:2FTS                | U      | 37      | ng/L  |            |             |          |        |     |       | U                |
| 6:2FTS                | U      | 38      | "     |            |             |          |        |     |       | U                |
| 8:2FTS                | U      | 38      | "     |            |             |          |        |     |       | U                |
| FOSA                  | U      | 40      | "     |            |             |          |        |     |       | U                |
| HFPO <del>-</del> DA  | U      | 40      | "     |            |             |          |        |     |       | U                |
| N-MeFOSAA             | U      | 160     | "     |            |             |          |        |     |       | U                |
| PFBA                  | U      | 40      | "     |            |             |          |        |     |       | U                |
| PFBS                  | U      | 35      | "     |            |             |          |        |     |       | U                |
| PFDA                  | U      | 160     | "     |            |             |          |        |     |       | U                |
| PFDoA                 | U      | 40      | "     |            |             |          |        |     |       | U                |
| PFDS                  | U      | 39      | "     |            |             |          |        |     |       | U                |
| PFHpA                 | U      | 40      | "     |            |             |          |        |     |       | U                |
| PFHpS                 | U      | 38      | "     |            |             |          |        |     |       | U                |
| PFHxA                 | U      | 40      | "     |            |             |          |        |     |       | U                |
| PFHxS                 | U      | 36      | "     |            |             |          |        |     |       | U                |
| PFNA                  | U      | 40      | "     |            |             |          |        |     |       | U                |
| PFNS                  | U      | 38      | "     |            |             |          |        |     |       | U                |
| PFOA                  | U      | 40      | "     |            |             |          |        |     |       | U                |
| PFOS                  | U      | 37      | "     |            |             |          |        |     |       | U                |
| PFPeA                 | U      | 40      | "     |            |             |          |        |     |       | QS <b>-</b> 3, U |
| PFPeS                 | U      | 38      | "     |            |             |          |        |     |       | U                |
| PFTrDA                | U      | 40      | "     |            |             |          |        |     |       | U                |
| PFUdA                 | U      | 40      | "     |            |             |          |        |     |       | U                |
|                       |        |         |       |            |             |          |        |     |       |                  |
| Blank (2001023-BLK2)  |        |         |       | Prepared & | & Analyzed: | 01/24/20 |        |     |       |                  |
| ASBPROC-800PFAS       | T.T.   | 27      | /r    |            |             |          |        |     |       |                  |
| 4:2FTS                | U      | 37      | ng/L  |            |             |          |        |     |       | U                |
| 6:2FTS                | U      | 38      | ,,    |            |             |          |        |     |       | U                |
| 8:2FTS                | U      | 38      | ,,    |            |             |          |        |     |       | U                |
| FOSA                  | U      | 40      |       |            |             |          |        |     |       | U                |
| HFPO•DA               | U      | 40      | "     |            |             |          |        |     |       | U                |
| N-MeFOSAA             | U      | 160     | "     |            |             |          |        |     |       | U                |
| PFBA                  | U      | 40      | "     |            |             |          |        |     |       | U                |
| PFBS                  | U      | 35      | "     |            |             |          |        |     |       | U                |
| PFDA                  | U      | 160     | "     |            |             |          |        |     |       | U                |
| PFDoA                 | U      | 40      | "     |            |             |          |        |     |       | U                |
| PFDS                  | U      | 39      | "     |            |             |          |        |     |       | U                |
| PFHpA                 | U      | 40      | "     |            |             |          |        |     |       | U                |
|                       |        |         |       |            |             |          |        |     |       |                  |

U

PFHpS



# Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Semi Volatile Organics (SVOA) - Quality Control US-EPA, Region 4, LSASD

| Analyte               | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes            |
|-----------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|-----|--------------|------------------|
| Batch 2001023 - S PFC |        |                    |       |                |                  |          |                |     |              |                  |
| Blank (2001023-BLK2)  |        |                    |       | Prepared &     | . Analyzed:      | 01/24/20 |                |     |              |                  |
| PFHxA                 | U      | 40                 | ng/L  |                |                  |          |                |     |              | U                |
| PFHxS                 | U      | 36                 | "     |                |                  |          |                |     |              | U                |
| PFNA                  | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFNS                  | U      | 38                 | "     |                |                  |          |                |     |              | U                |
| PFOA                  | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFOS                  | U      | 37                 | "     |                |                  |          |                |     |              | U                |
| PFPeA                 | U      | 40                 | "     |                |                  |          |                |     |              | QS <b>-</b> 3, U |
| PFPeS                 | U      | 38                 | "     |                |                  |          |                |     |              | U                |
| PFTrDA                | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFUdA                 | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| Blank (2001023-BLK3)  |        |                    |       | Prepared &     | z Analyzed:      | 01/24/20 |                |     |              |                  |
| ASBPROC-800PFAS       |        |                    |       |                |                  |          |                |     |              |                  |
| 4:2FTS                | U      | 37                 | ng/L  |                |                  |          |                |     |              | U                |
| 6:2FTS                | U      | 38                 | "     |                |                  |          |                |     |              | U                |
| 8:2FTS                | U      | 38                 | "     |                |                  |          |                |     |              | U                |
| FOSA                  | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| HFPO <b>-</b> DA      | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| N=MeFOSAA             | U      | 160                | "     |                |                  |          |                |     |              | U                |
| PFBA                  | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFBS                  | U      | 35                 | "     |                |                  |          |                |     |              | U                |
| PFDA                  | U      | 160                | "     |                |                  |          |                |     |              | U                |
| PFDoA                 | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFDS                  | U      | 39                 | "     |                |                  |          |                |     |              | U                |
| PFHpA                 | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFHpS                 | U      | 38                 | "     |                |                  |          |                |     |              | U                |
| PFHxA                 | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFHxS                 | U      | 36                 | "     |                |                  |          |                |     |              | U                |
| PFNA                  | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFNS                  | U      | 38                 | "     |                |                  |          |                |     |              | U                |
| PFOA                  | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFOS                  | U      | 37                 | "     |                |                  |          |                |     |              | U                |
| PFPeA                 | U      | 40                 | "     |                |                  |          |                |     |              | QS-3, U          |
| PFPeS                 | U      | 38                 | "     |                |                  |          |                |     |              | U                |
| PFTrDA                | U      | 40                 | "     |                |                  |          |                |     |              | U                |
| PFUdA                 | U      | 40                 | "     |                |                  |          |                |     |              | U                |



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Semi Volatile Organics (SVOA) - Quality Control **US-EPA, Region 4, LSASD**

Spike

Source

%REC

RPD

Reporting

|                            |        | Reporting     |       | Spike       | Source     |            | %REC              |     | KPD   |       |
|----------------------------|--------|---------------|-------|-------------|------------|------------|-------------------|-----|-------|-------|
| Analyte                    | Result | Limit         | Units | Level       | Result     | %REC       | Limits            | RPD | Limit | Notes |
| Batch 2001023 - S PFC      |        |               |       |             |            |            |                   |     |       |       |
| LCS (2001023-BS1)          |        |               |       | Prepared: ( | 01/24/20 A | nalyzed: 0 | 1/31/20           |     |       |       |
| ASBPROC-800PFAS            |        |               |       | _           |            |            |                   |     |       |       |
| 4:2FTS                     | 257    | 37            | ng/L  | 374.00      |            | 68.8       | 67.1-125          |     |       |       |
| 6:2FTS                     | 313    | 38            | "     | 380.00      |            | 82.3       | 49.2-134          |     |       |       |
| 3:2FTS                     | 319    | 38            | "     | 384.00      |            | 83.2       | 56.4-136          |     |       |       |
| FOSA                       | 286    | 40            | "     | 400.00      |            | 71.5       | 57.7-148          |     |       |       |
| HFPO <b>-</b> DA           | 310    | 40            | "     | 400.00      |            | 77.5       | 51.1-127          |     |       |       |
| N=MeFOSAA                  | 278    | 160           | "     | 400.00      |            | 69.5       | 43.2-178          |     |       |       |
| PFBA                       | 272    | 40            | "     | 400.00      |            | 68.1       | 67.9 <b>-</b> 118 |     |       |       |
| PFBS                       | 268    | 35            | "     | 354.00      |            | 75.8       | 68.2-118          |     |       |       |
| PFDA                       | 301    | 160           | "     | 400.00      |            | 75.2       | 47.4-162          |     |       |       |
| PFDoA                      | 278    | 40            | "     | 400.00      |            | 69.6       | 56.5 <b>=</b> 155 |     |       |       |
| PFDS                       | 265    | 39            | "     | 386.00      |            | 68.7       | 35.1-168          |     |       |       |
| PFHpA                      | 293    | 40            | "     | 400.00      |            | 73.2       | 72.8-116          |     |       |       |
| PFHpS                      | 283    | 38            | "     | 380.00      |            | 74.5       | 59.7-130          |     |       |       |
| PFHxA                      | 292    | 40            | "     | 400.00      |            | 73.1       | 62.6-127          |     |       |       |
| PFHxS                      | 243    | 36            | "     | 364.80      |            | 66.7       | 69.5-117          |     |       | QL-   |
| PFNA                       | 302    | 40            | "     | 400.00      |            | 75.5       | 64.1-128.4        |     |       |       |
| PFNS                       | 270    | 38            | "     | 384.00      |            | 70.2       | 63.3-126          |     |       |       |
| PFOA                       | 308    | 40            | "     | 400.00      |            | 76.9       | 66.7-122          |     |       |       |
| PFOS                       | 264    | 37            | "     | 370.20      |            | 71.4       | 70.4 <b>-</b> 122 |     |       |       |
| PFPeA                      | 297    | 40            | "     | 400.00      |            | 74.2       | 72-115            |     |       |       |
| PFPeS                      | 256    | 38            | "     | 376.00      |            | 68.0       | 69-117            |     |       | QL-   |
| PFTrDA                     | 282    | 40            | "     | 400.00      |            | 70.4       | 32.2-215          |     |       |       |
| PFUdA                      | 291    | 40            | "     | 400.00      |            | 72.9       | 65.8-142          |     |       |       |
|                            |        |               |       |             |            |            |                   |     |       |       |
| Matrix Spike (2001023-MS1) | Sou    | rce: E200304- | 13    | Prepared: ( | 01/24/20 A | nalyzed: 0 | 1/25/20           |     |       |       |
| ASBPROC-800PFAS            |        |               |       |             |            |            |                   |     |       |       |
| 4:2FTS                     | 213    | 37            | ng/L  | 295.42      | U          | 72.0       | 70-133            |     |       |       |
| 6:2FTS                     | 230    | 38            | "     | 300.16      | U          | 76.5       | 58-143            |     |       |       |
| 8:2FTS                     | 212    | 38            | "     | 303.32      | U          | 70.0       | 66=126            |     |       |       |
| FOSA                       | 177    | 40            | "     | 315.96      | U          | 55.9       | 61-138            |     |       | QM•   |
| HFPO <b>-</b> DA           | 331    | 40            | "     | 315.96      | U          | 105        | 45-129            |     |       |       |
| N-MeFOSAA                  | 236    | 160           | "     | 315.96      | U          | 74.8       | 47 <b>-</b> 169   |     |       |       |
| PFBA                       | 223    | 40            | "     | 315.96      | U          | 70.6       | 60-141            |     |       |       |
| PFBS                       | 207    | 35            | "     | 279.62      | U          | 74.2       | 62-135            |     |       |       |
| PFDA                       | 245    | 160           | "     | 315.96      | U          | 77.6       | 53-156            |     |       |       |
| PFDoA                      | 229    | 40            | "     | 315.96      | U          | 72.6       | 30-172            |     |       |       |
| PFDS                       | 227    | 38            | ,,    | 304.90      | U          | 74.3       | 44-151            |     |       |       |
| PFHpA                      | 241    | 40            | "     | 315.96      | U          | 76.2       | 75 <b>-</b> 122   |     |       |       |
|                            |        |               |       |             |            |            |                   |     |       |       |

E200304 SVOA FINAL 02 19 20 1050

221

38

300.16

73.7

66-132

PFHpS



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Semi Volatile Organics (SVOA) - Quality Control **US-EPA**, Region 4, LSASD

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits  | RPD  | RPD<br>Limit | Notes         |
|---------------------------------|--------|--------------------|-------|----------------|------------------|-------------|-----------------|------|--------------|---------------|
| Batch 2001023 - S PFC           |        |                    |       |                |                  |             |                 |      |              |               |
| Matrix Spike (2001023-MS1)      | Sou    | rce: E200304-1.    | 3     | Prepared: 0    | )1/24/20 At      | nalyzed: 01 | /25/20          |      |              |               |
| PFHxA                           | 240    | 40                 | ng/L  | 315.96         | U                | 75.8        | 64-138          |      |              |               |
| PFHxS                           | 223    | 36                 | "     | 288.15         | U                | 77.2        | 72-124          |      |              |               |
| PFNA                            | 244    | 40                 | "     | 315.96         | U                | 77.2        | 72-129          |      |              |               |
| PFNS                            | 215    | 38                 | "     | 303.32         | U                | 70.8        | 61-126          |      |              |               |
| PFOA                            | 245    | 40                 | "     | 315.96         | U                | 77.6        | 74-127          |      |              |               |
| PFOS                            | 223    | 37                 | "     | 292.42         | U                | 76.1        | 68-132          |      |              |               |
| PFPeA                           | 240    | 40                 | "     | 315.96         | U                | 76.0        | 75-122          |      |              |               |
| PFPeS                           | 213    | 37                 | "     | 297.00         | U                | 71.7        | 72-122          |      |              | QM <b>-</b> 1 |
| PFTrDA                          | 223    | 40                 | "     | 315.96         | U                | 70.7        | 10-193          |      |              |               |
| PFUdA                           | 240    | 40                 | "     | 315.96         | U                | 75.9        | 44-164          |      |              |               |
| Matrix Spike Dup (2001023-MSD1) | Sou    | rce: E200304-1.    | 3     | Prepared: 0    | )1/24/20 Aı      | nalyzed: 01 | /25/20          |      |              |               |
| ASBPROC-800PFAS                 |        |                    |       |                |                  |             |                 |      |              |               |
| 4:2FTS                          | 227    | 38                 | ng/L  | 302.10         | U                | 75.1        | 70-133          | 6.46 | 34           |               |
| 6:2FTS                          | 244    | 38                 | "     | 306.95         | U                | 79.6        | 58-143          | 6.21 | 45           |               |
| 8:2FTS                          | 217    | 39                 | "     | 310.18         | U                | 70.1        | 66-126          | 2.40 | 56           |               |
| FOSA                            | 188    | 40                 | "     | 323.10         | U                | 58.3        | 61-138          | 6.44 | 39           | QM-1          |
| HFPO-DA                         | 342    | 40                 | "     | 323.10         | U                | 106         | 45-129          | 3.46 | 57           |               |
| N-MeFOSAA                       | 256    | 160                | "     | 323.10         | U                | 79.3        | 47 <b>-</b> 169 | 8.16 | 65           |               |
| PFBA                            | 233    | 40                 | "     | 323.10         | U                | 72.0        | 60-141          | 4.10 | 37           |               |
| PFBS                            | 212    | 36                 | "     | 285.95         | U                | 74.3        | 62-135          | 2.41 | 32           |               |
| PFDA                            | 256    | 160                | "     | 323.10         | U                | 79.1        | 53-156          | 4.24 | 57           |               |
| PFDoA                           | 246    | 40                 | "     | 323.10         | U                | 76.1        | 30-172          | 6.86 | 56           |               |
| PFDS                            | 237    | 39                 | "     | 311.79         | U                | 75.9        | 44 <b>-</b> 151 | 4.36 | 66           |               |
| PFHpA                           | 251    | 40                 | "     | 323.10         | U                | 77.6        | 75-122          | 4.10 | 26           |               |
| PFHpS                           | 237    | 38                 | "     | 306.95         | U                | 77.2        | 66-132          | 6.92 | 28           |               |
| PFHxA                           | 254    | 40                 | "     | 323.10         | U                | 78.5        | 64-138          | 5.67 | 42           |               |
| PFHxS                           | 238    | 37                 | "     | 294.67         | U                | 80.8        | 72-124          | 6.71 | 32           |               |
| PFNA                            | 252    | 40                 | "     | 323.10         | U                | 78.1        | 72-129          | 3.50 | 31           |               |
| PFNS                            | 220    | 39                 | "     | 310.18         | U                | 70.8        | 61-126          | 2.29 | 35           |               |
| PFOA                            | 256    | 40                 | "     | 323.10         | U                | 79.1        | 74-127          | 4.14 | 32           |               |
| PFOS                            | 219    | 37                 | "     | 299.03         | U                | 73.4        | 68-132          | 1.39 | 37           |               |
| PFPeA                           | 250    | 40                 | "     | 323.10         | U                | 77.3        | 75-122          | 3.86 | 27           |               |
| PFPeS                           | 233    | 38                 | "     | 303.72         | U                | 76.9        | 72-122          | 9.19 | 29           |               |
| PFTrDA                          | 252    | 40                 | "     | 323.10         | U                | 78.1        | 10-193          | 12.1 | 106          |               |
| PFUdA                           | 247    | 40                 | "     | 323.10         | U                | 76.6        | 44 <b>-</b> 164 | 3.14 | 48           |               |



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Semi Volatile Organics (SVOA) - Quality Control **US-EPA, Region 4, LSASD**

| Analyte                        | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits    | RPD | RPD<br>Limit | Notes                              |
|--------------------------------|--------|--------------------|-------|----------------|------------------|----------|-------------------|-----|--------------|------------------------------------|
| Batch 2001023 - S PFC          |        |                    |       |                |                  |          |                   |     |              |                                    |
| MRL Verification (2001023-PS1) |        |                    |       | Prepared &     | : Analyzed: (    | 01/24/20 |                   |     |              |                                    |
| ASBPROC-800PFAS                |        |                    |       | <u> </u>       |                  |          |                   |     |              |                                    |
| 4:2FTS                         | 25.9   | 37                 | ng/L  | 37.400         |                  | 69.2     | 47.1-145          |     |              | MRL-2,<br>Q <b>-</b> 2,            |
| 6:2FTS                         | 29.1   | 38                 | "     | 38.000         |                  | 76.6     | 29.2-154          |     |              | MRL <b>-</b> 2,                    |
| 8:2FTS                         | 28.3   | 38                 | ,,    | 38.400         |                  | 73.8     | 36.4 <b>-</b> 156 |     |              | Q-2, J<br>MRL-2,                   |
| 0.2513                         | 28.3   | 36                 |       | 38.400         |                  | 13.8     | 30.4-130          |     |              | Q <b>-2</b> , J                    |
| FOSA                           | 24.5   | 40                 | "     | 40.000         |                  | 61.2     | 37.7-168          |     |              | MRL-2,                             |
| HFPO <b>-</b> DA               | 38.9   | 40                 | "     | 40.000         |                  | 97.3     | 31.3=147          |     |              | Q=2, I<br>MRL=2,                   |
|                                |        |                    |       |                |                  |          |                   |     |              | Q <b>-</b> 2, J                    |
| PFBA                           | 28.5   | 40                 | "     | 40.000         |                  | 71.3     | 47.9 <b>-</b> 138 |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J |
| PFBS                           | 26.8   | 35                 | "     | 35.400         |                  | 75.8     | 48.2-138          |     |              | MRL <b>-</b> 2,                    |
|                                |        |                    |       |                |                  |          |                   |     |              | Q <b>-</b> 2, J                    |
| PFDoA                          | 26.1   | 40                 | "     | 40.000         |                  | 65.4     | 36.5 <b>-</b> 175 |     |              | MRL-2,<br>Q <b>-</b> 2, J          |
| PFDS                           | 26.9   | 39                 | "     | 38,600         |                  | 69.8     | 15.1 <b>-</b> 188 |     |              | MRL=2,                             |
| DDV. A                         | 20.5   | 40                 | ,,    | 40.000         |                  | 76.0     | 52.0.126          |     |              | Q <b>-</b> 2, J                    |
| PFHpA                          | 30.5   | 40                 |       | 40.000         |                  | 76.2     | 52.8 <b>-</b> 136 |     |              | MRL-2,<br>Q-2, J                   |
| PFHpS                          | 26.5   | 38                 | "     | 38,000         |                  | 69.7     | 39.7-150          |     |              | MRL-2,                             |
| PFHxA                          | 28.8   | 40                 | ,,    | 40.000         |                  | 72.0     | 42.6 <b>-</b> 147 |     |              | Q <b>=</b> 2, J<br>MRL <b>-</b> 2, |
| rrnxa                          | 20.0   | 40                 |       | 40.000         |                  | 72.0     | 42.0=147          |     |              | Q-2, J                             |
| PFHxS                          | 25.8   | 36                 | "     | 36.480         |                  | 70.7     | 49.5-138          |     |              | MRL-2,                             |
| PFNA                           | 28.2   | 40                 | ,,    | 40.000         |                  | 70.6     | 44.1-148          |     |              | Q <b>-</b> 2, J<br>MRL <b>-</b> 2, |
|                                | 20.2   |                    |       | 10.000         |                  | 70.0     | 11.1 110          |     |              | Q-2, J                             |
| PFNS                           | 25.1   | 38                 | "     | 38.400         |                  | 65.4     | 43.3-146          |     |              | MRL=2,                             |
| PFOA                           | 33.1   | 40                 | "     | 40.000         |                  | 82.8     | 46.7-142          |     |              | Q-2, J<br>MRL <b>-</b> 2,          |
|                                |        |                    |       |                |                  |          |                   |     |              | Q-2, J                             |
| PFOS                           | 27.6   | 37                 | "     | 37.020         |                  | 74.5     | 50.4 <b>-</b> 142 |     |              | MRL=2,<br>Q-2, J                   |
| PFPeA                          | 30.9   | 40                 | "     | 40.000         |                  | 77.2     | 52-135            |     |              | MRL <b>-</b> 2,                    |
|                                |        |                    |       |                |                  |          |                   |     |              | Q <b>-</b> 2, J                    |
| PFPeS                          | 28.8   | 38                 | "     | 37.600         |                  | 76.6     | 49-137            |     |              | MRL-2,<br>Q-2, J                   |
| PFTrDA                         | 22.6   | 40                 | n     | 40.000         |                  | 56.6     | 12.2-235          |     |              | MRL-2,                             |
| DELLIA                         | 20.0   | 40                 | ,,    | 40.000         |                  | 60.0     | 45.0.162          |     |              | Q <b>-</b> 2, J                    |
| PFUdA                          | 28.0   | 40                 | ,,    | 40.000         |                  | 69.9     | 45.8 <b>-</b> 162 |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J |
| MRL Verification (2001023-PS2) |        |                    |       | Prepared &     | : Analyzed: (    | 01/24/20 |                   |     |              |                                    |
| ASBPROC-800PFAS                |        |                    |       |                |                  | ,, _ v   |                   |     |              |                                    |
| N-MeFOSAA                      | 121    | 160                | ng/L  | 160.00         |                  | 75.9     | 23.2-198          |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2,   |



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Semi Volatile Organics (SVOA) - Quality Control **US-EPA, Region 4, LSASD**

| Analyte                        | Result    | Reporting<br>Limit | Units | Spike<br>Level   | Source<br>Result | %REC     | %REC<br>Limits       | RPD | RPD<br>Limit | Notes                              |
|--------------------------------|-----------|--------------------|-------|------------------|------------------|----------|----------------------|-----|--------------|------------------------------------|
| Batch 2001023 - S PFC          |           |                    |       |                  |                  |          |                      |     |              |                                    |
| MRL Verification (2001023-PS2) |           |                    |       | Prepared &       | Analyzed:        | 01/24/20 |                      |     |              |                                    |
| PFDA                           | 115       | 160                | ng/L  | 160.00           |                  | 71.8     | 27.4-182             |     |              | MRL=2,<br>Q-2, J                   |
| MRL Verification (2001023-PS3) |           |                    |       | Prepared &       | Analyzed:        | 01/24/20 |                      |     |              |                                    |
| ASBPROC-800PFAS<br>4:2FTS      | 7.69      | 9.4                | ng/L  | 9.3500           |                  | 82.2     | 47.1-145             |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J |
| 6:2FTS                         | 9.06      | 9.5                | "     | 9.5000           |                  | 95.4     | 29.2-154             |     |              | MRL=2,<br>Q=2, J                   |
| 8:2FTS                         | 8.40      | 9.6                | "     | 9.6000           |                  | 87.5     | 36.4-156             |     |              | MRL-2,<br>Q-2, J                   |
| FBSA                           | 7.80      | 10                 | "     | 10.000           |                  | 78.0     | 50 <b>-</b> 150      |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J |
| FBSEE- diol                    | 9.60      | 10                 | "     | 10.010           |                  | 95.9     | 50 <b>-</b> 150      |     |              | MRL <b>-</b> 2,<br>Q-2, J          |
| FOSA                           | 4.98      | 10                 | "     | 10.000           |                  | 49.8     | 37.7 <b>-</b> 168    |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J |
| HFPO <b>-</b> DA               | 12.1      | 10                 | "     | 10.000           |                  | 121      | 31.3-147             |     |              | MRL-2                              |
| N-EtFOSAA                      | 6.31      | 10                 | "     | 10.000           |                  | 63.1     | 27.2 <b>=</b> 205    |     |              | MRL-2,<br>Q <b>-</b> 2, J          |
| N•MeFOSAA                      | 6.91      | 10                 | "     | 10.000           |                  | 69.1     | 23.2-198             |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J |
| PFBA                           | 7.71      | 10                 | "     | 10.000           |                  | 77.1     | 47.9-138             |     |              | MRL-2,<br>Q-2, J                   |
| PFBS                           | 7.68      | 8.8                | "     | 8.8500           |                  | 86.8     | 48.2-138             |     |              | MRL-2,<br>Q-2, J                   |
| PFDA                           | 7.34      | 10                 | "     | 10.000           |                  | 73.4     | 27.4 <b>-</b> 182    |     |              | MRL-2,<br>Q <b>-</b> 2, J          |
| PFDoA                          | 7.83      | 10                 |       | 10.000           |                  | 78.3     | 36.5-175             |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J |
| PFDS                           | 6.35      | 9.6                | "     | 9.6500           |                  | 65.8     | 15.1-188             |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J |
| PFHpA                          | 9.36      | 10                 | "     | 10.000           |                  | 93.6     | 52.8=136             |     |              | MRL <b>-</b> 2,<br>Q-2, J          |
| PFH <sub>x</sub> A             | 10.0<br>U | 9.5<br>20          | ,,    | 9.5000<br>10.000 |                  | 105      | 39.7-150<br>42.6-147 |     |              | MRL-2<br>MRL-2,                    |
| PFHxS                          | 8.55      | 9.1                | "     | 9.1200           |                  | 93.8     | 49.5=138             |     |              | U<br>MRL-2,                        |
| PFNA                           | 7.91      | 10                 | "     | 10.000           |                  | 79.1     | 44.1-148             |     |              | Q-2, J<br>MRL <b>-</b> 2,          |
| PFNS                           | 6.37      | 9.6                | "     | 9.6000           |                  | 66.4     | 43.3-146             |     |              | Q-2, J<br>MRL-2,<br>Q-2, J         |
| PFOA                           | 10.2      | 10                 | "     | 10.000           |                  | 102      | 46.7-142             |     |              | MRL-2                              |
| PFOS                           | 10.3      | 9.2                | "     | 9.2550           |                  | 112      | 50.4-142             |     |              | MRL-2                              |
| PFPeA                          | 8.74      | 10                 |       | 10.000           |                  | 87.4     | 52-135               |     |              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J |



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Semi Volatile Organics (SVOA) - Quality Control US-EPA, Region 4, LSASD

Spike

Source

Reporting

%REC

RPD

| Result       | Limit                                                                           | Units                                                                                                                                                                                                                                                                                                                                                                                                  | Level                                                                                                                                                                                                                             | Result                                                                                                                                                                                                                                                                                                                                                                                       | 0/DEC                                                                                                                                                                                                                                                                                                                                                                                                  | T 1 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NT-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   | Result                                                                                                                                                                                                                                                                                                                                                                                       | %REC                                                                                                                                                                                                                                                                                                                                                                                                   | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        | Prepared &                                                                                                                                                                                                                        | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                    | 01/24/20                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.70         | 9.4                                                                             | ng/L                                                                                                                                                                                                                                                                                                                                                                                                   | 9.4000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 81.9                                                                                                                                                                                                                                                                                                                                                                                                   | 49=137                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL <b>-</b> 2,<br>Q-2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| U            | 20                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        | 22.9-199                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.79         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 57.9                                                                                                                                                                                                                                                                                                                                                                                                   | 12.2-235                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL•2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7.39         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 73.9                                                                                                                                                                                                                                                                                                                                                                                                   | 45.8 <b>-</b> 162                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q=2, J<br>MRL=2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <b>-2</b> , J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        | Prepared &                                                                                                                                                                                                                        | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                    | 01/24/20                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.01         | 9.4                                                                             | ng/L                                                                                                                                                                                                                                                                                                                                                                                                   | 9.3500                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 75.0                                                                                                                                                                                                                                                                                                                                                                                                   | 47.1-145                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL=2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <b>-</b> 2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                 | "                                                                                                                                                                                                                                                                                                                                                                                                      | 9.5000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 103                                                                                                                                                                                                                                                                                                                                                                                                    | 29.2-154                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.94         | 9.6                                                                             | "                                                                                                                                                                                                                                                                                                                                                                                                      | 9.6000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 93.1                                                                                                                                                                                                                                                                                                                                                                                                   | 36.4-156                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.21         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 82.1                                                                                                                                                                                                                                                                                                                                                                                                   | 50=150                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL <b>-</b> 2,<br>Q <b>-</b> 2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.46         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.010                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 84.5                                                                                                                                                                                                                                                                                                                                                                                                   | 50-150                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.99         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 49.9                                                                                                                                                                                                                                                                                                                                                                                                   | 37.7 <b>-</b> 168                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <b>-</b> 2, J<br>MRL <b>-</b> 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <b>-</b> 2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11.4         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 114                                                                                                                                                                                                                                                                                                                                                                                                    | 31.3-147                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.15         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 51.5                                                                                                                                                                                                                                                                                                                                                                                                   | 27.2-205                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2,<br>Q-2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.83         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 68.3                                                                                                                                                                                                                                                                                                                                                                                                   | 23.2-198                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <b>-</b> 2, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.93         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 69.3                                                                                                                                                                                                                                                                                                                                                                                                   | 47.9 <del>-</del> 138                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL <b>-</b> 2,<br>Q-2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.32         | 8.8                                                                             | "                                                                                                                                                                                                                                                                                                                                                                                                      | 8.8500                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 82.7                                                                                                                                                                                                                                                                                                                                                                                                   | 48.2-138                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q-2, 3<br>MRL <b>-</b> 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <b>-</b> 2, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.00         | 10                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 70.0                                                                                                                                                                                                                                                                                                                                                                                                   | 27.4 <b>-</b> 182                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.90         | 10                                                                              | ,,                                                                                                                                                                                                                                                                                                                                                                                                     | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 69.0                                                                                                                                                                                                                                                                                                                                                                                                   | 26 5 175                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q-2, J<br>MRL-2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.80         | 10                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 08.0                                                                                                                                                                                                                                                                                                                                                                                                   | 30.3-173                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q-2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.72         | 9.6                                                                             | "                                                                                                                                                                                                                                                                                                                                                                                                      | 9.6500                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 69.6                                                                                                                                                                                                                                                                                                                                                                                                   | 15.1-188                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.72         | 10                                                                              | ,,                                                                                                                                                                                                                                                                                                                                                                                                     | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 96.2                                                                                                                                                                                                                                                                                                                                                                                                   | 52.0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q-2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.62         | 10                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 86.2                                                                                                                                                                                                                                                                                                                                                                                                   | 52.8=136                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL=2,<br>Q-2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.66         | 9.5                                                                             | "                                                                                                                                                                                                                                                                                                                                                                                                      | 9.5000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 80.7                                                                                                                                                                                                                                                                                                                                                                                                   | 39.7-150                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL <b>-</b> 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <b>-</b> 2, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| U            | 20                                                                              | "                                                                                                                                                                                                                                                                                                                                                                                                      | 10.000                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        | 42.6-147                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.51         | 0.1                                                                             | ,,                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1200                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | 104                                                                                                                                                                                                                                                                                                                                                                                                    | 40 5 120                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.51<br>7.56 | 9.1<br>10                                                                       | "                                                                                                                                                                                                                                                                                                                                                                                                      | 9.1200<br>10.000                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                              | 104<br>75.6                                                                                                                                                                                                                                                                                                                                                                                            | 49.5 <b>-</b> 138<br>44.1 <b>-</b> 148                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MRL-2<br>MRL <b>-</b> 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 7.01 9.78 8.94 8.21 8.46 4.99 11.4 5.15 6.83 6.93 7.32 7.00 6.80 6.72 8.62 7.66 | U       20         5.79       10         7.39       10         7.01       9.4         9.78       9.5         8.94       9.6         8.21       10         4.99       10         11.4       10         5.15       10         6.83       10         6.93       10         7.32       8.8         7.00       10         6.80       10         6.72       9.6         8.62       10         7.66       9.5 | U 20 " 5.79 10 " 7.39 10 " 7.39 10 " 7.39 10 " 7.31 9.4 ng/L 9.78 9.5 " 8.94 9.6 " 8.21 10 " 8.46 10 " 4.99 10 " 11.4 10 " 5.15 10 " 6.83 10 " 6.83 10 " 7.32 8.8 " 7.00 10 " 6.80 10 " 6.80 10 " 6.72 9.6 " 8.62 10 " 7.66 9.5 " | 7.70 9.4 ng/L 9.4000  U 20 " 10.000  5.79 10 " 10.000  7.39 10 " 10.000  Prepared &  7.01 9.4 ng/L 9.3500  9.78 9.5 " 9.5000  8.94 9.6 " 9.6000  8.21 10 " 10.000  8.46 10 " 10.010  4.99 10 " 10.000  11.4 10 " 10.000  5.15 10 " 10.000  6.83 10 " 10.000  6.83 10 " 10.000  6.84 8.8 " 8.8500  7.00 10 " 10.000  6.80 10 " 10.000  6.72 9.6 " 9.6500  8.62 10 " 10.000  7.66 9.5 " 9.5000 | 7.70 9.4 ng/L 9.4000  U 20 " 10.000  5.79 10 " 10.000  7.39 10 " 10.000  Prepared & Analyzed:  7.01 9.4 ng/L 9.3500  9.78 9.5 " 9.5000  8.94 9.6 " 9.6000  8.21 10 " 10.000  8.46 10 " 10.010  4.99 10 " 10.000  11.4 10 " 10.000  5.15 10 " 10.000  6.83 10 " 10.000  6.83 10 " 10.000  7.32 8.8 " 8.8500  7.00 10 " 10.000  6.80 10 " 10.000  6.72 9.6 " 9.6500  8.62 10 " 10.000  7.66 9.5 " 9.5000 | U 20 " 10.000 57.9  7.39 10 " 10.000 57.9  7.39 10 " 10.000 73.9  Prepared & Analyzed: 01/24/20  7.01 9.4 ng/L 9.3500 75.0  9.78 9.5 " 9.5000 103  8.94 9.6 " 9.6000 93.1  8.21 10 " 10.000 82.1  8.46 10 " 10.010 84.5  4.99 10 " 10.000 114  5.15 10 " 10.000 114  5.15 10 " 10.000 68.3  6.93 10 " 10.000 68.3  6.93 10 " 10.000 69.3  7.32 8.8 " 8.8500 82.7  7.00 10 " 10.000 68.0  6.72 9.6 " 9.6500 69.6  8.62 10 " 10.000 86.2  7.66 9.5 " 9.5000 80.7 | 7.70 9.4 ng/L 9.4000 81.9 49-137 U 20 " 10.000 22.9-199 5.79 10 " 10.000 57.9 12.2-235 7.39 10 " 10.000 73.9 45.8-162  Prepared & Analyzed: 01/24/20  7.01 9.4 ng/L 9.3500 75.0 47.1-145 9.78 9.5 " 9.5000 103 29.2-154 8.94 9.6 " 9.6000 93.1 36.4-156 8.21 10 " 10.000 82.1 50-150 8.46 10 " 10.010 84.5 50-150 4.99 10 " 10.000 49.9 37.7-168 11.4 10 " 10.000 114 31.3-147 5.15 10 " 10.000 51.5 27.2-205 6.83 10 " 10.000 68.3 23.2-198 6.93 10 " 10.000 69.3 47.9-138 7.32 8.8 " 8.8500 82.7 48.2-138 7.00 10 " 10.000 69.3 47.9-138 7.32 8.8 " 8.8500 82.7 48.2-138 7.00 10 " 10.000 68.0 36.5-175 6.72 9.6 " 9.6500 69.6 15.1-188 8.62 10 " 10.000 86.2 52.8-136 7.66 9.5 " 9.5000 80.7 39.7-150 | 7.70 9.4 ng/L 9.4000 81.9 49·137  U 20 " 10.000 22.9-199  5.79 10 " 10.000 57.9 12.2-235  7.39 10 " 10.000 73.9 45.8-162  Prepared & Analyzed: 01/24/20  7.01 9.4 ng/L 9.3500 75.0 47.1-145  9.78 9.5 " 9.5000 103 29.2-154  8.94 9.6 " 9.6000 93.1 36.4-156  8.21 10 " 10.000 82.1 50·150  8.46 10 " 10.010 84.5 50·150  4.99 10 " 10.000 49.9 37.7-168  11.4 10 " 10.000 49.9 37.7-168  11.4 10 " 10.000 51.5 27.2-205  6.83 10 " 10.000 68.3 23.2-198  6.93 10 " 10.000 69.3 47.9-138  7.32 8.8 " 8.8500 82.7 48.2-138  7.00 10 " 10.000 69.3 47.9-138  7.32 8.8 " 8.8500 82.7 48.2-138  7.00 10 " 10.000 68.0 36.5-175  6.72 9.6 " 9.6500 69.6 15.1-188  8.62 10 " 10.000 86.2 52.8-136  7.66 9.5 " 9.5000 80.7 39.7-150 | 7.70 9.4 ng/L 9.4000 81.9 49-137  U 20 " 10.000 22.9-199  5.79 10 " 10.000 57.9 12.2-235  7.39 10 " 10.000 73.9 45.8-162  Prepared & Analyzed: 01/24/20  7.01 9.4 ng/L 9.3500 75.0 47.1-145  9.78 9.5 " 9.5000 103 29.2-154  8.94 9.6 " 9.6000 93.1 36.4-156  8.21 10 " 10.000 82.1 50-150  8.46 10 " 10.010 84.5 50-150  8.46 10 " 10.000 49.9 37.7-168  11.4 10 " 10.000 114 31.3-147  5.15 10 " 10.000 51.5 27.2-205  6.83 10 " 10.000 68.3 23.2-198  6.93 10 " 10.000 69.3 47.9-138  7.32 8.8 " 8.8500 82.7 48.2-138  7.00 10 " 10.000 70.0 27.4-182  6.80 10 " 10.000 68.0 36.5-175  6.72 9.6 " 9.6500 69.6 15.1-188  8.62 10 " 10.000 86.2 52.8-136  7.66 9.5 " 9.5000 80.7 39.7-150 |



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Semi Volatile Organics (SVOA) - Quality Control **US-EPA**, Region 4, LSASD

Spike

Source

Reporting

%REC

RPD

|                                |        | Reporting |       | Spike      | Source      |          | %KEC              |     | KPD   |                                 |
|--------------------------------|--------|-----------|-------|------------|-------------|----------|-------------------|-----|-------|---------------------------------|
| Analyte                        | Result | Limit     | Units | Level      | Result      | %REC     | Limits            | RPD | Limit | Notes                           |
| Batch 2001023 - S PFC          |        |           |       |            |             |          |                   |     |       |                                 |
| MRL Verification (2001023-PS4) |        |           |       | Prepared & | : Analyzed: | 01/24/20 |                   |     |       |                                 |
| PFNS                           | 4.89   | 9.6       | ng/L  | 9.6000     |             | 50.9     | 43.3-146          |     |       | MRL <b>-</b> 2<br>Q-2,          |
| PFOA                           | 10.7   | 10        | "     | 10.000     |             | 107      | 46.7-142          |     |       | MRL-                            |
| PFOS                           | 6.98   | 9.2       | "     | 9.2550     |             | 75.5     | 50.4-142          |     |       | MRL-2                           |
| PFPeA                          | 8.00   | 10        | "     | 10.000     |             | 80.0     | 52-135            |     |       | Q <b>-</b> 2,<br>MRL <b>-</b> 2 |
| rrea                           | 8.00   | 10        |       | 10.000     |             | 80.0     | 32-133            |     |       | Q <b>-</b> 2,                   |
| PFPeS                          | 8.07   | 9.4       | "     | 9.4000     |             | 85.9     | 49=137            |     |       | MRL-2                           |
| PFTeDA                         | U      | 20        | ,,    | 10.000     |             |          | 22.9-199          |     |       | Q <b>-</b> 2,<br>MRL <b>-</b> 2 |
| FIEDA                          | O      | 20        |       | 10.000     |             |          | 22.9-199          |     |       | VIKL=2                          |
| PFTrDA                         | 5.92   | 10        | "     | 10.000     |             | 59.2     | 12.2-235          |     |       | MRL=2                           |
| PFUdA                          | 8.16   | 10        | ,,    | 10.000     |             | 81.6     | 45.8-162          |     |       | Q <b>-</b> 2,<br>MRL <b>-</b> 2 |
| TOUA                           | 6.10   | 10        |       | 10.000     |             | 61.0     | 45.6-102          |     |       | Q <b>-</b> 2,                   |
|                                |        |           |       |            |             |          |                   |     |       |                                 |
| MRL Verification (2001023-PS5) |        |           |       | Prepared & | : Analyzed: | 01/24/20 |                   |     |       |                                 |
| ASBPROC-800PFAS<br>4:2FTS      | 7.23   | 9.4       | ng/L  | 9.3500     |             | 77.3     | 47.1=145          |     |       | MRL-2                           |
|                                | 7.20   | 2.1       | ng L  | 9.5500     |             | 77.5     | 17.1 113          |     |       | Q <b>-</b> 2,                   |
| 5:2FTS                         | 11.3   | 9.5       | "     | 9.5000     |             | 119      | 29.2-154          |     |       | MRL=                            |
| 3:2FTS                         | 8.58   | 9.6       | "     | 9.6000     |             | 89.4     | 36.4-156          |     |       | MRL <b>-</b> 2<br>Q-2,          |
| FBSA                           | 8.91   | 10        | "     | 10.000     |             | 89.1     | 50-150            |     |       | Q-2,<br>MRL-2                   |
|                                |        |           |       |            |             |          |                   |     |       | Q <b>-</b> 2,                   |
| FBSEE- diol                    | 7.94   | 10        | "     | 10.010     |             | 79.3     | 50-150            |     |       | MRL-2<br>Q <b>-</b> 2,          |
| FOSA                           | 4.87   | 10        | "     | 10.000     |             | 48.7     | 37.7-168          |     |       | Q <b>-</b> 2,<br>MRL <b>-</b> 2 |
|                                |        |           |       |            |             |          |                   |     |       | Q <b>-</b> 2,                   |
| HFPO-DA                        | 9.25   | 10        | "     | 10.000     |             | 92.5     | 31.3-147          |     |       | MRL-2<br>Q-2,                   |
| N-EtFOSAA                      | 3.58   | 10        | "     | 10.000     |             | 35.8     | 27.2-205          |     |       | MRL <b>=</b> 2                  |
|                                |        |           |       |            |             |          |                   |     |       | Q <b>-</b> 2,                   |
| N-MeFOSAA                      | 5.11   | 10        | "     | 10.000     |             | 51.1     | 23.2-198          |     |       | MRL <b>-</b> 2<br>Q-2,          |
| PFBA                           | 6.13   | 10        | "     | 10.000     |             | 61.3     | 47.9-138          |     |       | MRL <b>-</b> 2                  |
|                                |        |           |       |            |             |          |                   |     |       | Q <b>-</b> 2,                   |
| PFBS                           | 8.29   | 8.8       | "     | 8.8500     |             | 93.7     | 48.2-138          |     |       | MRL <b>-</b> 2<br>Q-2,          |
| PFDA                           | 7.99   | 10        | "     | 10.000     |             | 79.9     | 27.4-182          |     |       | MRL <b>-</b> 2                  |
|                                |        |           | _     |            |             |          |                   |     |       | Q <b>-</b> 2,                   |
| PFDoA                          | 6.76   | 10        | "     | 10.000     |             | 67.6     | 36.5-175          |     |       | MRL-2<br>Q-2,                   |
| PFDS                           | 6.77   | 9.6       | "     | 9.6500     |             | 70.2     | 15.1-188          |     |       | MRL <b>-</b> 2                  |
|                                |        |           |       |            |             |          |                   |     |       | Q <b>-</b> 2,                   |
| PFHpA                          | 8.58   | 10        | "     | 10.000     |             | 85.8     | 52.8 <b>-</b> 136 |     |       | MRL-2<br>Q-2,                   |

Page 50 of 52 E200304 SVOA FINAL 02 19 20 1050



Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Semi Volatile Organics (SVOA) - Quality Control US-EPA, Region 4, LSASD

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

|  | Batch | 20010 | )23 - S | S PFC |
|--|-------|-------|---------|-------|
|--|-------|-------|---------|-------|

| MRL Verification (2001023-PS5) |      |     |      | Prepared & Anal | lyzed: 01/24/20 |                   |                 |
|--------------------------------|------|-----|------|-----------------|-----------------|-------------------|-----------------|
| PFHpS                          | 6.29 | 9.5 | ng/L | 9.5000          | 66.3            | 39.7 <b>-</b> 150 | MRL=2,          |
|                                |      |     |      |                 |                 |                   | Q-2, J          |
| PFHxA                          | U    | 20  | "    | 10.000          |                 | 42.6-147          | MRL-2,          |
|                                |      |     |      |                 |                 |                   | U               |
| PFHxS                          | 6.60 | 9.1 | "    | 9.1200          | 72.3            | 49.5=138          | MRL=2,          |
|                                |      |     |      |                 |                 |                   | Q <b>-</b> 2, J |
| PFNA                           | 7.24 | 10  | "    | 10.000          | 72.4            | 44.1=148          | MRL <b>-</b> 2, |
|                                |      |     |      |                 |                 |                   | Q <b>-</b> 2, J |
| PFNS                           | 6.76 | 9.6 | "    | 9.6000          | 70.4            | 43.3=146          | MRL=2,          |
|                                |      |     |      |                 |                 |                   | Q <b>-</b> 2, J |
| PFOA                           | 9.86 | 10  | "    | 10.000          | 98.6            | 46.7-142          | MRL=2,          |
|                                |      |     |      |                 |                 |                   | Q <b>-</b> 2, J |
| PFOS                           | 7.83 | 9.2 | "    | 9.2550          | 84.6            | 50.4 <b>-</b> 142 | MRL=2,          |
|                                |      |     |      |                 |                 |                   | Q•2, J          |
| PFPeA                          | 7.97 | 10  | "    | 10.000          | 79.7            | 52=135            | MRL <b>-</b> 2, |
|                                |      |     |      |                 |                 |                   | Q•2, J          |
| PFPeS                          | 8.23 | 9.4 | "    | 9.4000          | 87.6            | 49=137            | MRL <b>-</b> 2, |
|                                |      |     |      |                 |                 |                   | Q•2, J          |
| PFTeDA                         | U    | 20  | "    | 10.000          |                 | 22.9=199          | MRL-2,          |
|                                |      |     |      |                 |                 |                   | Ü               |
| PFTrDA                         | 5.42 | 10  | "    | 10.000          | 54.2            | 12.2-235          | MRL=2,          |
|                                |      |     |      |                 |                 |                   | Q <b>-2</b> , J |
| PFUdA                          | 7.61 | 10  | "    | 10.000          | 76.1            | 45.8 <b>=</b> 162 | MRL=2,          |
|                                |      |     |      |                 |                 |                   | Q <b>-</b> 2, J |

Page 51 of 52 E200304 SVOA FINAL 02 19 20 1050



QS-3

# UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 4 Laboratory Services and Applied Science Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 20-0147

Project: 20-0147, GAEPD PFAS Study - Blairsville, GA - Reported by Jason Collum

# Notes and Definitions for QC Samples

| U     | The analyte was not detected at or above the reporting limit.                       |
|-------|-------------------------------------------------------------------------------------|
| J     | The identification of the analyte is acceptable; the reported value is an estimate. |
| MRL-2 | MRL verification for Non-Potable Water matrix                                       |
| Q-2   | Result greater than MDL but less than MRL.                                          |
| QL-1  | Laboratory Control Spike Recovery less than method control limits                   |
| QM-1  | Matrix Spike Recovery less than method control limits                               |

Surrogate recovery is lower than established control limits.

Page 52 of 52 E200304 SVOA FINAL 02 19 20 1050

Permit No. GA0033375 Issuance Date:



#### NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT

In accordance with the provisions of the Georgia Water Quality Control Act (Georgia Laws 1964, p. 416, as amended), hereinafter called the State Act; the Federal Water Pollution Control Act, as amended (33 U.S. C. 1251 et seq.), hereinafter called the Federal Act; and the Rules and Regulations promulgated pursuant to each of these Acts,

City of Blairsville Post Office Box 307 Blairsville, Georgia, 30514

is authorized to discharge from a facility located at

Blairsville Water Pollution Control Plant (WPCP) 145 Scott Drive Blairsville, Georgia 30512 (Union County)

to receiving waters

**Butternut Creek** (Tennessee River Basin)

in accordance with effluent limitations, monitoring requirements and other conditions set forth in the permit.

This permit is issued in reliance upon the permit application signed on June 27, 2018, any other applications upon which this permit is based, supporting data entered therein or attached thereto, and any subsequent submittal of supporting data.

This permit shall become effective on XXXXXXX, 20XX.

This permit and the authorization to discharge shall expire at midnight, XXXXX XX, 20XX.



**DRAFT** 

Director, Environmental Protection Division

#### **PART I**

EPD is the Environmental Protection Division of the Department of Natural Resources.

The Federal Act referred to is The Clean Water Act.

The State Act referred to is The Water Quality Control Act (Act No. 870).

The State Rules referred to are The Rules and Regulations for Water Quality Control (Chapter 391-3-6).

#### A. SPECIAL CONDITIONS

#### 1. MONITORING

- a. The monthly average, other than for fecal coliform bacteria, is the arithmetic mean of values obtained for samples collected during a calendar month.
- b. The weekly average, other than for fecal coliform bacteria, is the arithmetic mean of values obtained for samples collected during a 7-day period. The week begins 12:00 midnight Saturday and ends at 12:00 midnight the following Saturday. To define a different starting time for the sampling period, the permittee must notify the EPD in writing. For reporting required by Part I.D.1. of this permit, a week that starts in one month and ends in another month shall be considered part of the second month. The permittee may calculate and report the weekly average as a 7-day moving average.
- c. Fecal coliform bacteria will be reported as the geometric mean of the values for the samples collected during the time periods in I.A.1.a. and I.A.1.b.
- d. Untreated wastewater influent samples required by I.B. shall be collected before any return or recycle flows. These flows include returned activated sludge, supernatants, centrates, filtrates, and backwash.
- e. Effluent samples required by I.B. of this permit shall be collected after the final treatment process and before discharge to receiving waters. Composite samples may be collected before disinfection with written EPD approval.
- f. A composite sample shall consist of a minimum of 5 subsamples collected at least once every 2 hours for at least 8 hours and shall be composited proportionately to flow.
- g. Flow measurements shall be conducted using the flow measuring device(s) in accordance with the approved design of the facility. If instantaneous measurements are required, then the permittee shall have a primary flow measuring device that is correctly installed and maintained. If continuous recording measurements are required, then flow measurements must be made using continuous recording equipment. Calibration shall be maintained of the continuous recording instrumentation to  $\pm$  10% of the actual flow.

Flow shall be measured manually to check the flow meter calibration at a frequency of once a month. If secondary flow instruments are in use and malfunction or fail to maintain calibration as required, the flow shall be computed from manual measurements or by other method(s) approved by EPD until such time as the secondary flow instrument is repaired. For facilities which utilize alternate technologies for measuring flow, the flow measurement device must be calibrated semi-annually by qualified personnel.

Records of the calibration checks shall be maintained.

- h. If secondary flow instruments malfunction or fail to maintain calibration as required in I.A.1.g., the flow shall be computed from manual measurements taken at the times specified for the collection of composite samples.
- i. Some parameters will be reported as "not detected" when they are below the detection limit and will then be considered in compliance with the effluent limit. The detection limit will also be reported.

# 2. SLUDGE DISPOSAL REQUIREMENTS

Sludge shall be disposed of according to the regulations and guidelines established by the EPD and the Federal Act section 405(d) and (e), and the Resource Conservation and Recovery Act (RCRA). In land applying nonhazardous municipal sewage sludge, the permittee shall comply with the general criteria outlined in the most current version of the EPD "Guidelines for Land Application of Sewage Sludge (Biosolids) at Agronomic Rates" and with the State Rules, Chapter 391-3-6-.17. Before disposing of municipal sewage sludge by land application or any method other than co-disposal in a permitted sanitary landfill, the permittee shall submit a sludge management plan to EPD for written approval. This plan will become a part of the NPDES Permit after approval and modification of the permit. The permittee shall notify the EPD of any changes planned in an approved sludge management plan.

If an applicable management practice or numerical limitation for pollutants in sewage sludge is promulgated under Section 405(d) of the Federal Act after approval of the plan, then the plan shall be modified to conform with the new regulations.

# 3. SLUDGE MONITORING REQUIREMENTS

The permittee shall develop and implement procedures to ensure adequate year-round sludge disposal. The permittee shall monitor and maintain records documenting the quantity of sludge removed from the facility. Records shall be maintained documenting that the quantity of solids removed from the facility equals the solids generated on an average day. The total quantity of sludge removed from the facility during the reporting period shall be reported each month with the Discharge Monitoring Reports as required under Part I.D.1. of this permit. The quantity shall be reported on a dry weight basis (dry tons).

# 4. INTRODUCTION OF POLLUTANTS INTO THE PUBLICLY OWNED TREATMENT WORKS (POTW)

The permittee must notify EPD of:

- a. Any new introduction of pollutants into the POTW from an indirect discharger that would be subject to Sections 301 or 306 of the Federal Act if the pollutants were directly discharged to a receiving stream; and
- b. Any substantial change in the volume or character of pollutants from a source that existed when the permit was issued.

This notice shall include information on the quality and quantity of the indirect discharge introduced and any anticipated impact on the quantity or quality of effluent to be discharged from the POTW.

# 5. EFFLUENT TOXICITY AND BIOMONITORING REQUIREMENTS

The permittee shall comply with effluent standards or prohibitions established by section 307(a) of the Federal Act and with Chapter 391-3-6-.03(5)(e) of the State Rules and may not discharge toxic pollutants in concentrations or combinations that are harmful to humans, animals, or aquatic life.

If toxicity is suspected in the effluent, the EPD may require the permittee to perform any of the following actions:

- a. Acute biomonitoring tests;
- b. Chronic biomonitoring tests;
- c. Stream studies;
- d. Priority pollutant analyses;
- e. Toxicity reduction evaluations (TRE); or
- f. Any other appropriate study.

The EPD will specify the requirements and methodologies for performing any of these tests or studies. Unless other concentrations are specified by the EPD, the critical concentration used to determine toxicity in biomonitoring tests will be the effluent instream wastewater concentration (IWC) based on the permitted monthly average flow of the facility and the critical low flow of the receiving stream (7Q10). The endpoints that will be reported are the effluent concentration that is lethal to 50% of the test organisms (LC50) if the test is for acute toxicity and the no observed effect concentration (NOEC) of effluent if the test is for chronic toxicity. The permittee must eliminate effluent toxicity and supply the EPD with data and evidence to confirm toxicity elimination.

# B.1. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

# <u>Discharge to Butternut Creek - Outfall #001 (34.873563°, -83.96901°)</u>:

The discharge from the water pollution control plant shall be limited and monitored by the permittee as specified below starting on the effective date of the permit and continuing until EPD provides approval of construction completion and written authorization to operate under the B.2. effluent limitations (1.0 MGD):

| Parameters                             | Discharge li<br>mg/L (k<br>unless otherw | kg/day)           | Monitor                  | nts                     |                        |
|----------------------------------------|------------------------------------------|-------------------|--------------------------|-------------------------|------------------------|
|                                        | Monthly<br>Average                       | Weekly<br>Average | Measurement<br>Frequency | Sample<br>Type          | Sample<br>Location     |
| Flow (MGD)                             | 0.4                                      | 0.5               | Seven Days/Week          | Continuous<br>Recording | Effluent               |
| Five-Day Biochemical Oxygen Demand (1) | 30 (45)                                  | 45 (57)           | Two Days/Week            | Composite               | Influent &<br>Effluent |
| Total Suspended Solids (1)             | 30 (45)                                  | 45 (57)           | Two Days/Week            | Composite               | Influent &<br>Effluent |
| Ammonia, as N (2)                      | 10 (15)                                  | 15 (19)           | Two Days/Week            | Composite               | Effluent               |
| Fecal Coliform Bacteria (#/100 mL)     | 200                                      | 400               | One Day/Week             | Grab                    | Effluent               |

Numeric limits only apply to the effluent.

Ammonia, organic nitrogen, nitrate-nitrite, and total Kjeldahl nitrogen (TKN) must be analyzed or calculated from the same sample. Organic nitrogen, as N = TKN – ammonia, as N.

# B.1. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

(CONTINUED)

|                                                             | Discharge<br>limitations in           | Monitoring Requirements  |                |                    |  |  |
|-------------------------------------------------------------|---------------------------------------|--------------------------|----------------|--------------------|--|--|
| Parameters                                                  | mg/L unless<br>otherwise<br>specified | Measurement<br>Frequency | Sample<br>Type | Sample<br>Location |  |  |
| Five-Day Biochemical Oxygen Demand Removal, Minimum (%) (1) | 85                                    | See Below                | See Below      | See Below          |  |  |
| Total Suspended Solids Removal, Minimum (%) (1)             | 85                                    | See Below                | See Below      | See Below          |  |  |
| pH, Daily Minimum – Daily Maximum (Standard<br>Unit)        | 6.0 - 9.0                             | Five Days/Week           | Grab           | Effluent           |  |  |
| Total Residual Chlorine, Daily Maximum                      | 0.08                                  | Five Days/Week           | Grab           | Effluent           |  |  |
| Dissolved Oxygen, Daily Minimum                             | 2.0                                   | Five Days/Week           | Grab           | Effluent           |  |  |
| Total Phosphorus, as P (2)                                  | Report                                | One Day/Month            | Composite      | Effluent           |  |  |
| Orthophosphate, as P (2)                                    | Report                                | One Day/Month            | Composite      | Effluent           |  |  |
| Organic Nitrogen, as N (3)                                  | Report                                | One Day/Month            | Composite      | Effluent           |  |  |
| Nitrate-Nitrite, as N <sup>(3)</sup>                        | Report                                | One Day/Month            | Composite      | Effluent           |  |  |
| Total Kjeldahl Nitrogen, as N (3)                           | Report                                | One Day/Month            | Composite      | Effluent           |  |  |
| Chronic Whole Effluent Toxicity (%) (4)                     | Report                                | See Below                | Composite      | Effluent           |  |  |
| Priority Pollutants (5)                                     | Report                                | See Below                | Composite      | Effluent           |  |  |
| Total Hardness, as CaCO <sub>3</sub> (7)                    | Report                                | One Day/Month            | Grab           | Downstream         |  |  |

Percent removal shall be calculated from monthly average influent and effluent concentrations. Influent and effluent samples shall be collected at approximately the same time.

- This monitoring requirement only applies when facility is receiving leachate in a calendar year. Refer to Part I.C.10. PRIORITY POLLUTANTS.
- This monitoring requirement only applies when facility is receiving leachate in a calendar year. Stream sampling location refers to the crossing of the Nottely River and Blue Ridge Highway.

Total phosphorus and orthophosphate must be analyzed from the same sample.

Ammonia, organic nitrogen, nitrate-nitrite, and total Kjeldahl nitrogen (TKN) must be analyzed or calculated from the same sample. Organic nitrogen, as N = TKN – ammonia, as N

This monitoring requirement only applies when facility is receiving leachate in a calendar year. Refer to Part I.C.9. CHRONIC WHOLE EFFLUENT TOXICITY.

# B.2. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

# <u>Discharge to Butternut Creek - Outfall #001 (34.873563°, -83.96901°)</u>:

The discharge from the water pollution control plant shall be limited and monitored by the permittee as specified below starting on the date EPD provides approval of construction completion and written authorization to operate under the B.2. effluent limitations (1.0 MGD):

| Parameters                             | Discharge limitations in mg/L (kg/day) unless otherwise specified |                   | Monitoring Requirements  |                         |                        |  |
|----------------------------------------|-------------------------------------------------------------------|-------------------|--------------------------|-------------------------|------------------------|--|
|                                        | Monthly<br>Average                                                | Weekly<br>Average | Measurement<br>Frequency | Sample<br>Type          | Sample<br>Location     |  |
| Flow (MGD)                             | 1.0                                                               | 1.25              | Seven Days/Week          | Continuous<br>Recording | Effluent               |  |
| Five-Day Biochemical Oxygen Demand (1) | 11 (42)                                                           | 16.5 (52)         | Three Days/Week          | Composite               | Influent &<br>Effluent |  |
| Total Suspended Solids (1)             | 20 (76)                                                           | 30 (95)           | Three Days/Week          | Composite               | Influent &<br>Effluent |  |
| Ammonia, as N (2)                      | 2.0 (7.6)                                                         | 3.0 (9.5)         | Three Days/Week          | Composite               | Effluent               |  |
| Total Phosphorus, as P (3)             | 1.0 (3.8)                                                         | 1.5 (4.7)         | Three Days/Week          | Composite               | Effluent               |  |
| Fecal Coliform Bacteria (#/100 mL)     | 200                                                               | 400               | Two Days/Week            | Grab                    | Effluent               |  |

Numeric limits only apply to the effluent.

Ammonia, organic nitrogen, nitrate-nitrite, and total Kjeldahl nitrogen (TKN) must be analyzed or calculated from the same sample. Organic nitrogen, as N = TKN – ammonia, as N.

Total phosphorus and orthophosphate must be analyzed from the same sample.

# B.2. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

(CONTINUED)

|                                                             | Discharge<br>limitations in           | Monitoring Requirements  |                |                    |  |  |
|-------------------------------------------------------------|---------------------------------------|--------------------------|----------------|--------------------|--|--|
| Parameters                                                  | mg/L unless<br>otherwise<br>specified | Measurement<br>Frequency | Sample<br>Type | Sample<br>Location |  |  |
| Five-Day Biochemical Oxygen Demand Removal, Minimum (%) (1) | 85                                    | See Below                | See Below      | See Below          |  |  |
| Total Suspended Solids Removal, Minimum (%) (1)             | 85                                    | See Below                | See Below      | See Below          |  |  |
| pH, Daily Minimum – Daily Maximum (Standard<br>Unit)        | 6.0 - 9.0                             | Seven Days/Week          | Grab           | Effluent           |  |  |
| Total Residual Chlorine, Daily Maximum                      | 0.04                                  | Seven Days/Week          | Grab           | Effluent           |  |  |
| Dissolved Oxygen, Daily Minimum                             | 5.0                                   | Seven Days/Week          | Grab           | Effluent           |  |  |
| Orthophosphate, as P (2)                                    | Report                                | One Day/Month            | Composite      | Effluent           |  |  |
| Organic Nitrogen, as N (3)                                  | Report                                | One Day/Month            | Composite      | Effluent           |  |  |
| Nitrate-Nitrite, as N <sup>(3)</sup>                        | Report                                | One Day/Month            | Composite      | Effluent           |  |  |
| Total Kjeldahl Nitrogen, as N (3)                           | Report                                | One Day/Month            | Composite      | Effluent           |  |  |
| Chronic Whole Effluent Toxicity (%) (4)                     | Report NOEC                           | See Below                | Composite      | Effluent           |  |  |
| Priority Pollutants (5)                                     | Report                                | See Below                | Grab           | Effluent           |  |  |
| Long Term Biochemical Oxygen Demand (6)                     | Report                                | See Below                | Composite      | Effluent           |  |  |
| Total Hardness, as CaCO <sub>3</sub> <sup>(7)</sup>         | Report                                | One Day/Month            | Grab           | Downstream         |  |  |

Percent removal shall be calculated from monthly average influent and effluent concentrations. Influent and effluent samples shall be collected at approximately the same time.

- (4) Refer to Part I.C.9. CHRONIC WHOLE EFFLUENT TOXICITY
- <sup>(5)</sup> Refer to Part I.C.10. PRIORITY POLLUTANTS
- (6) Refer to Part I.C.11. LONG-TERM BIOCHEMICAL OXYGEN DEMAND

Total phosphorus and orthophosphate must be analyzed from the same sample.

Ammonia, organic nitrogen, nitrate-nitrite, and total Kjeldahl nitrogen (TKN) must be analyzed or calculated from the same sample. Organic nitrogen, as N = TKN – ammonia, as N

This monitoring requirement only applies when facility is receiving leachate in a calendar year. Stream sampling location refers to the crossing of the Nottely River and Highway 76.

#### C. MONITORING AND REPORTING

#### 1. REPRESENTATIVE SAMPLING

Samples and measurements of the monitored waste shall represent the volume and nature of the waste stream. The permittee shall maintain a written sampling and monitoring schedule.

#### 2. SAMPLING PERIOD

- a. Unless otherwise specified in this permit, quarterly samples shall be taken during the periods January-March, April-June, July-September, and October-December.
- b. Unless otherwise specified in this permit, semiannual samples shall be taken during the periods January-June and July-December.
- c. Unless otherwise specified in this permit, annual samples shall be taken during the period of January-December.

#### 3. MONITORING PROCEDURES

All analytical methods, sample containers, sample preservation techniques, and sample holding times must be consistent with the techniques and methods listed in 40 CFR Part 136. The analytical method used shall be sufficiently sensitive. EPA-approved methods must be applicable to the concentration ranges of the NPDES permit samples.

#### 4. RECORDING OF RESULTS

For each required parameter analyzed, the permittee shall record:

- a. The exact place, date, and time of sampling, and the person(s) collecting the sample. For flow proportioned composite samples, this shall include the instantaneous flow and the corresponding volume of each sample aliquot, and other information relevant to document flow proportioning of composite samples:
- b. The dates and times the analyses were performed;
- c. The person(s) who performed the analyses;
- d. The analytical procedures or methods used; and
- e. The results of all required analyses.

#### 5. ADDITIONAL MONITORING BY PERMITTEE

If the permittee monitors required parameters at the locations designated in I.B. more frequently than required, the permittee shall analyze all samples using approved analytical methods specified in I.C.3. The results of this additional monitoring shall be included in calculating and reporting the values on the Discharge Monitoring Report forms. The permittee shall indicate the monitoring frequency on the report. The EPD may require in writing more frequent monitoring, or monitoring of other pollutants not specified in this permit.

#### 6. RECORDS RETENTION

The permittee shall retain records of:

- a. All laboratory analyses performed including sample data, quality control data, and standard curves;
- b. Calibration and maintenance records of laboratory instruments;
- c. Calibration and maintenance records and recordings from continuous recording instruments;
- d. Process control monitoring records;
- e. Facility operation and maintenance records;
- f. Copies of all reports required by this permit;
- g. All data and information used to complete the permit application; and
- h. All monitoring data related to sludge use and disposal.

These records shall be kept for at least three years. Sludge handling records must be kept for at least five years. Either period may be extended by EPD written notification.

# 7. PENALTIES

Both the Federal and State Acts provide that any person who falsifies or tampers with any monitoring device or method required under this permit, or who makes any false statement, representation, or certification in any record submitted or required by this permit shall, if convicted, be punished by a fine or by imprisonment or by both. The Acts include procedures for imposing civil penalties for violations or for negligent or intentional failure or refusal to comply with any final or emergency order of the Director of the EPD.

#### 8. WATERSHED PROTECTION PLAN

Prior to receiving authorization to operate under Part I.B.2. (1.0 MGD), the permittee must develop a Watershed Protection Plan for all the watersheds that are contained within the permittee's Assessment Area. The Assessment Area is defined as all basins or subbasins that are served by the facility. The scope of the work for the Watershed Protection Plan must include defining what steps will be necessary to improve and ultimately meet water quality standards.

#### a. Watershed Protection Plan

The Watershed Protection Plan will provide for the following:

- i. The Watershed Protection Plan will apply to the Assessment Area as defined above. The plan will utilize the information generated in the permittee's watershed assessment to establish a baseline of watershed conditions and to provide ongoing long-term monitoring according to the approved plan to either verify that the plan is effective or to modify the plan such that water quality standards will be achieved.
- ii. The Watershed Protection Plan must include a schedule for correcting current water quality problems that are causing water quality standards violations. The permittee shall provide ongoing monitoring to verify that the actions taken to correct the water quality problems are effective.
- iii. The permittee shall develop and put in place best management practices (BMPs) to prevent future water quality standards violations.
- iv. The permittee shall provide ongoing monitoring to verify that the BMPs are working or to provide the information necessary to modify the BMPs to achieve water quality standards.

# b. Compliance Schedule

- i. Within 6 months from the effective date of the permit and every 6 months thereafter until EPD approves the permittee's Watershed Protection Plan, the permittee is to submit a report to EPD regarding the progress it has made towards developing its Watershed Protection Plan. After EPD approval of the Watershed Monitoring Plan, the progress reports should include a summary of what stream data has been collected the previous 6 months. This data should be sent in the form of an electronic spreadsheet developed in coordination with EPD. The report should also estimate what percentage of the Watershed Protection Plan is complete.
- ii. Prior to authorization to operate the facility under Part I.B.2. (1.0 MGD) effluent limitations, the permittee must have developed a Watershed Protection Plan and receive EPD approval for the Plan. The permittee's approved Watershed Protection Plan shall be enforceable through this permit.

# c. Annual Report

Once the Watershed Protection Plan is approved, each June 30<sup>th</sup> the permittee is to submit the following to EPD:

- i. An annual certification statement documenting that the plan is being implemented as approved. The certification statement shall read as follows: "I certify, under penalty of law, that the watershed protection plan is being implemented. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."
- ii. All watershed plan data collected during the previous year in an electronic format. This data shall be archived using a digital format such as a spreadsheet developed in coordination with EPD. All archived records, data, and information pertaining to the watershed protection plan shall be maintained permanently.
- iii. A progress report that provides a summary of the BMPs that have been implemented and documented water quality improvements. The progress report shall also include any necessary changes to the watershed protection plan.

The report and other information shall be submitted to EPD at the address below:

Environmental Protection Division
Watershed Planning and Monitoring Program
2 Martin Luther King Jr. Drive SE
Suite 1152 East
Atlanta, Georgia 30334

# 9. CHRONIC WHOLE EFFLUENT TOXICITY (WET)

a. Part I.B.1. (0.4 MGD):

The permittee must conduct <u>annual</u> chronic Whole Effluent Toxicity (WET) tests. This monitoring requirement only applies when the facility receives leachate during the calendar year. Once <u>four annual tests</u> have been conducted within the permit cycle, this monitoring requirement no longer applies. The effluent sample must be representative of the combined treated municipal sewage and leachate discharge.

The testing must be conducted in accordance with the most current U.S. Environmental Protection Agency (EPA) chronic aquatic toxicity testing manuals. The referenced document is entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 4<sup>th</sup> Edition, U.S. EPA, 821-R-02-013, October 2002. Definitive tests must be run on the same samples concurrently using both an invertebrate species (i.e., *Ceriodaphnia dubia*) and a vertebrate species (i.e., *Pimephales promelas*). The testing must include a dilution equal to the facility's instream wastewater concentration (IWC) of 14%.

For each WET test, the permittee shall submit a report to EPD that includes the following information:

- i. Maximum daily volume of leachate received at the facility 30 days prior to first effluent sample being collected;
- ii. Daily volume of leachate received at the facility 7 days prior to and 7 days after the first effluent sample being collected;
- iii. Daily average influent or effluent flow 7 days prior to and 7 days after the first effluent sample being collected; and
- iv. A copy of the laboratory report.

The report shall be submitted to EPD at the address below:

Environmental Protection Division Wastewater Regulatory Program 2 Martin Luther King Jr. Drive SE Suite 1152 East Atlanta, Georgia 30334

An effluent discharge will not be considered toxic if the No Observed Effect Concentration (NOEC) is greater than or equal to the Instream Wastewater Concentration (IWC) of 14%. Upon receipt of the report, EPD will evaluate the results. If the test results indicate effluent toxicity, the permittee may be required to perform additional tests or studies in accordance with Part I.C.5. of the permit and/or the permit may be modified to include a chronic WET limit.

# b. Part I.B.2. (1.0 MGD):

The permittee shall conduct one chronic whole effluent toxicity (WET) test <u>for four consecutive quarters</u> after receiving EPD written authorization to commence operation under Part I.B.2 effluent limitations (1.0 MGD), with the first test conducted within 90 days of the authorization. The testing must be conducted in accordance with the most current U.S. Environmental Protection Agency (EPA) chronic aquatic toxicity testing manuals. The referenced document is entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 4<sup>th</sup> Edition, U.S. EPA, 821-R-02-013, October 2002. Definitive tests must be run on the same samples concurrently using both an invertebrate species (i.e., *Ceriodaphnia dubia*) and a vertebrate species (i.e., *Pimephales promelas*). The testing must include a dilution equal to the facility's instream wastewater concentration (IWC) of 28%.

EPD will evaluate the WET tests submitted to determine whether toxicity has been demonstrated. An effluent discharge will not be considered toxic if the No Observed Effect Concentration (NOEC) is greater than or equal to the Instream Wastewater Concentration (IWC) of 28%. The results of the tests shall be submitted to EPD with the permittee's monthly Discharge Monitoring Reports.

Within fifteen months of receiving authorization to operate under Part I.B.2 effluent limitations (1.0 MGD), the permittee shall submit a report to EPD that includes a summary of the effluent data collected as well as copies of all the analytical laboratory reports. The report shall be submitted to EPD at the address below:

Environmental Protection Division Wastewater Regulatory Program 2 Martin Luther King Jr. Drive SE Suite 1152 East Atlanta, Georgia 30334

Upon receipt of the report, EPD will evaluate the results. If the test results indicate effluent toxicity, the permittee may be required to perform additional tests or studies in accordance with Part I.C.5 of the permit and/or the permit may be modified to include a chronic WET limit.

After the first year, the permittee must conduct <u>annual</u> whole effluent toxicity (WET) tests. This monitoring requirement only applies when the facility receives leachate during the calendar year. The effluent sample must be representative of the combined treated municipal sewage and leachate discharge.

The testing must be conducted in accordance with the most current U.S. Environmental Protection Agency (EPA) chronic aquatic toxicity testing manuals. The referenced document is entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 4<sup>th</sup> Edition, U.S. EPA, 821-R-02-013, October 2002. Definitive tests must be run on the same samples concurrently using both an invertebrate species (i.e., *Ceriodaphnia dubia*) and a vertebrate species (i.e., *Pimephales promelas*). The testing must include a dilution equal to the facility's instream wastewater concentration (IWC) of 28%.

For each WET test, the permittee shall submit a report to EPD that includes the following information:

- i. Maximum daily volume of leachate received at the facility 30 days prior to first effluent sample being collected;
- ii. Daily volume of leachate received at the facility 7 days prior to and 7 days after the first effluent sample being collected;
- iii. Daily average influent or effluent flow 7 days prior to and 7 days after the first effluent sample being collected; and
- iv. A copy of the laboratory report.

The report shall be submitted to EPD at the address below:

Environmental Protection Division Wastewater Regulatory Program 2 Martin Luther King Jr. Drive SE Suite 1152 East Atlanta, Georgia 30334

An effluent discharge will not be considered toxic if the No Observed Effect Concentration (NOEC) is greater than or equal to the Instream Wastewater Concentration (IWC) of 28%. Upon receipt of the report, EPD will evaluate the results. If the test results indicate effluent toxicity, the permittee may be required to perform additional tests or studies in accordance with Part I.C.5. of the permit and/or the permit may be modified to include a chronic WET limit.

#### 10. PRIORITY POLLUTANTS

a. Part I.B.1. (0.4 MGD):

The permittee must conduct <u>annual</u> scans of the priority pollutants. This monitoring requirement only applies if the facility receives leachate during the calendar year. Once <u>three annual scans</u> have been conducted within the permit cycle, this monitoring requirement no longer applies. The effluent sample must be representative of the combined treated municipal sewage/leachate discharge. Total recoverable mercury must be sampled and analyzed using EPA Method 1631E.

For each priority pollutants scan, the permittee shall submit a report to EPD that includes the following information:

- i. Maximum daily volume of leachate received at the facility 30 days prior to first effluent sample being collected;
- ii. Daily volume of leachate received at the facility 7 days prior to and 7 days after the first effluent sample being collected;
- iii. Daily average influent or effluent flow 7 days prior to and 7 days after the first effluent sample being collected; and
- iv. A copy of the laboratory report.

The report shall be submitted to EPD at the address below:

Environmental Protection Division Wastewater Regulatory Program 2 Martin Luther King Jr. Drive SE Suite 1152 East Atlanta, Georgia 30334 Upon receipt of the report, EPD will evaluate the results. If substances are measured at levels of concern, then the permittee may be required to perform additional priority pollutant analyses in accordance with Part I.C.5. or the permit may be modified to include effluent limitations for priority pollutants.

# b. Part I.B.2. (1.0 MGD):

The permittee must conduct one scan of the priority pollutants <u>for three consecutive quarters</u> after receiving EPD written authorization to commence operation under Part I.B.2 effluent limitations (1.0 MGD), with the first scan conducted within 90 days of the authorization. The priority pollutant scans must represent seasonal variation. Total recoverable mercury must be sampled and analyzed using EPA Method 1631E. The results of the tests shall be submitted to EPD with the permittee's monthly Discharge Monitoring Reports.

Within fifteen months of receiving authorization to operate under Part I.B.2 effluent limitations (1.0 MGD), the permittee shall submit a report to EPD that includes a summary of the effluent data collected as well as copies of all the analytical laboratory reports. The report shall be submitted to EPD at the address below:

Environmental Protection Division Wastewater Regulatory Program 2 Martin Luther King Jr. Drive SE Suite 1152 East Atlanta, Georgia 30334

Upon receipt of the report, EPD will conduct a reasonable potential evaluation. If substances are measured at levels of concern, then the permittee may be required to perform additional priority pollutant analyses in accordance with Part I.C.5 or the permit may be modified to include effluent limitations for priority pollutants.

After the first year, the permittee must conduct <u>annual</u> scans of the priority pollutants. This monitoring requirement only applies if the facility receives leachate during the calendar year. The effluent sample must be representative of the combined treated municipal sewage/leachate discharge. Total recoverable mercury must be sampled and analyzed using EPA Method 1631E.

For each priority pollutants scan, the permittee shall submit a report to EPD that includes the following information:

- i. Maximum daily volume of leachate received at the facility 30 days prior to first effluent sample being collected;
- ii. Daily volume of leachate received at the facility 7 days prior to and 7 days after the first effluent sample being collected;
- iii. Daily average influent or effluent flow 7 days prior to and 7 days after the first effluent sample being collected; and
- iv. A copy of the laboratory report.

The report shall be submitted to EPD at the address below:

Environmental Protection Division Wastewater Regulatory Program 2 Martin Luther King Jr. Drive SE Suite 1152 East Atlanta, Georgia 30334

Upon receipt of the report, EPD will evaluate the results. If substances are measured at levels of concern, then the permittee may be required to perform additional priority pollutant analyses in accordance with Part I.C.5. or the permit may be modified to include effluent limitations for priority pollutants.

#### 11. LONG-TERM BIOCHEMICAL OXYGEN DEMAND TESTING

Part I.B.2. (1.0 MGD):

The permittee shall perform a 120-day Long-Term BOD test once during the permit cycle. The test should be performed on an effluent sample collected during the critical period from June 1 through September 30. The results of this test shall be submitted to EPD at least 180 days prior to the permit expiration date to the following address:

Environmental Protection Division
Watershed Planning and Monitoring Program
2 Martin Luther King Jr. Drive SE
Suite 1152 East
Atlanta, Georgia 30334

# D. REPORTING REQUIREMENTS

- 1. The permittee must electronically report the DMR, OMR and additional monitoring data using the web based electronic NetDMR reporting system, unless a waiver is granted by EPD.
  - a. The permittee must comply with the Federal National Pollutant Discharge Elimination System Electronic Reporting regulations in 40 CFR §127. The permittee must electronically report the DMR, OMR, and additional monitoring data using the web based electronic NetDMR reporting system online at: <a href="https://netdmr.epa.gov/netdmr/public/home.htm">https://netdmr.epa.gov/netdmr/public/home.htm</a>
  - b. Monitoring results obtained during the calendar month shall be summarized for each month and reported on the DMR. The results of each sampling event shall be reported on the OMR and submitted as an attachment to the DMR.
  - c. The permittee shall submit the DMR, OMR and additional monitoring data no later than 11:59 p.m. on the 15<sup>th</sup> day of the month following the sampling period.

- d. All other reports required herein, unless otherwise stated, shall be submitted to the EPD Office listed on the permit issuance letter signed by the Director of EPD.
- 2. **No later than December 21, 2020,** the permittee must electronically report the following compliance monitoring data and reports using the online web based electronic system approved by EPD, unless a waiver is granted by EPD:
  - a. Sewage Sludge/Biosolids Annual Program Reports provided that the permittee has an approved Sewage Sludge (Biosolids) Plan;
  - b. Pretreatment Program Reports provided that the permittee has an approved Industrial Pretreatment Program in this permit;
  - c. Sewer Overflow/Bypass Event Reports;
  - d. Noncompliance Notification;
  - e. Other noncompliance; and
  - f. Bypass

### 3. OTHER REPORTS

All other reports required in this permit not listed above in Part I.D.2 or unless otherwise stated, shall be submitted to the EPD Office listed on the permit issuance letter signed by the Director of EPD.

#### 4. OTHER NONCOMPLIANCE

All instances of noncompliance not reported under Part I.B. and Part II. A. shall be reported to EPD at the time the monitoring report is submitted.

# 5. SIGNATORY REQUIREMENTS

All reports, certifications, data or information submitted in compliance with this permit or requested by EPD must be signed and certified as follows:

- a. Any State or NPDES Permit Application form submitted to the EPD shall be signed as follows in accordance with the Federal Regulations, 40 C.F.R. 122.22:
  - 1. For a corporation, by a responsible corporate officer. A responsible corporate officer means:
    - i. a president, secretary, treasurer, or vice president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision making functions for the corporation, or

- ii. the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
- 2. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively; or
- 3. For a municipality, State, Federal, or other public facility, by either a principal executive officer or ranking elected official.
- b. All other reports or requests for information required by the permit issuing authority shall be signed by a person designated in (a) above or a duly authorized representative of such person, if:
  - 1. The representative so authorized is responsible for the overall operation of the facility from which the discharge originates, e.g., a plant manager, superintendent or person of equivalent responsibility;
  - 2. The authorization is made in writing by the person designated under (a) above; and
  - 3. The written authorization is submitted to the Director.
- c. Any changes in written authorization submitted to the permitting authority under (b) above which occur after the issuance of a permit shall be reported to the permitting authority by submitting a copy of a new written authorization which meets the requirements of (b) and (b.1) and (b.2) above.
- d. Any person signing any document under (a) or (b) above shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

#### **PART II**

### A. MANAGEMENT REQUIREMENTS

#### 1. PROPER OPERATION AND MAINTENANCE

The permittee shall properly maintain and operate efficiently all treatment or control facilities and related equipment installed or used by the permittee to achieve compliance with this permit. Efficient operation and maintenance include effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures. Back-up or auxiliary facilities or similar systems shall be operated only when necessary to achieve permit compliance.

#### 2. PLANNED CHANGE

Any anticipated facility expansions, or process modifications which will result in new, different, or increased discharges of pollutants requires the submission of a new NPDES permit application. If the changes will not violate the permit effluent limitations, the permittee may notify EPD without submitting an application. The permit may then be modified to specify and limit any pollutants not previously limited.

### 3. TWENTY-FOUR HOUR REPORTING

If, for any reason the permittee does not comply with, or will be unable to comply with any effluent limitations specified in the permittee's NPDES permit, the permittee shall provide EPD with an oral report within 24 hours from the time the permittee becomes aware of the circumstances followed by a written report within five (5) days of becoming aware of such condition. The written submission shall contain the following information:

- a. A description of the noncompliance and its cause; and
- b. The period of noncompliance, including the exact date and times; or, if not corrected, the anticipated time the noncompliance is expected to continue; and
- c. The steps taken to reduce, eliminate, and prevent recurrence of the noncomplying discharge.

#### 4. ANTICIPATED NONCOMPLIANCE NOTIFICATION

The permittee shall give written notice to the EPD at least 10 days before:

- a. Any planned changes in the permitted facility; or
- b. Any activity which may result in noncompliance with the permit.

### 5. OTHER NONCOMPLIANCE

The permittee must report all instances of noncompliance not reported under other specific reporting requirements, at the time monitoring reports are submitted. The reports shall contain the information required under conditions of twenty-four hour reporting.

# 6. OPERATOR CERTIFICATION REQUIREMENTS

The person responsible for the daily operation of the facility must be a Class II Certified Operator in compliance with the Georgia State Board of Examiners for Certification of Water and Wastewater Plant Operators and Laboratory Analysts Act, as amended, and as specified by Subparagraph 391-3-6-.12 of the Rules and Regulations for Water Quality Control. All other operators must have the minimum certification required by this Act.

Beginning on the date that EPD provides written authorization for operation of the facility under I.B.2., the person responsible for the daily operation of the facility must be a Class I Certified Operator in compliance with the Georgia State Board of Examiners for Certification of Water and Wastewater Plant Operators and Laboratory Analysts Act, as amended, and as specified by Subparagraph 391-3-6-.12 of the Rules and Regulations for Water Quality Control. All other operators must have the minimum certification required by this Act.

# 7. LABORATORY ANALYST CERTIFICATION REQUIREMENTS

Laboratory Analysts must be certified in compliance with the Georgia State Board of Examiners for Certification of Water and Wastewater Treatment Plant Operators and Laboratory Analysts Act, as amended.

#### 8. BYPASSING

Any diversion of wastewater from or bypassing of wastewater around the permitted treatment works is prohibited, except if:

- a. Bypassing is unavoidable to prevent loss of life, personal injury, or severe property damage;
- b. There are no feasible alternatives to bypassing; and
- c. The permittee notifies the EPD at least 10 days before the date of the bypass.

Feasible alternatives to bypassing include use of auxiliary treatment facilities and retention of untreated waste. The permittee must take all possible measures to prevent bypassing during routine preventative maintenance by installing adequate back-up equipment.

The permittee shall operate the facility and the sewer system to minimize discharge of pollutants from combined sewer overflows or bypasses and may be required by the EPD to submit a plan and schedule to reduce bypasses, overflows, and infiltration.

Any unplanned bypass must be reported following the requirements for noncompliance notification specified in II.A.3. The permittee may be liable for any water quality violations that occur as a result of bypassing the facility.

#### 9. POWER FAILURES

If the primary source of power to this water pollution control facility is reduced or lost, the permittee shall use an alternative source of power to reduce or control all discharges to maintain permit compliance.

#### 10. DUTY TO MITIGATE

The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge disposal which might adversely affect human health or the environment.

#### 11. NOTICE CONCERNING ENDANGERING WATERS OF THE STATE

Whenever, because of an accident or otherwise, any toxic or taste and color producing substance, or any other substance which would endanger downstream users of the waters of the State or would damage property, is discharged into such waters, or is so placed that it might flow, be washed, or fall into them, it shall be the duty of the person in charge of such substances at the time to forthwith notify EPD in person or by telephone of the location and nature of the danger, and it shall be such person's further duty to immediately take all reasonable and necessary steps to prevent injury to property and downstream users of said water.

#### Spills and Major Spills:

A "spill" is any discharge of raw sewage by a Publicly Owned Treatment Works (POTW) to the waters of the State.

# A "major spill" means:

- 1. The discharge of pollutants into waters of the State by a POTW that exceeds the weekly average permitted effluent limit for biochemical oxygen demand (5-day) or total suspended solids by 50 percent or greater in one day, provided that the effluent discharge concentration is equal to or greater than 25 mg/L for biochemical oxygen demand or total suspended solids.
- 2. Any discharge of raw sewage that 1) exceeds 10,000 gallons or 2) results in water quality violations in the waters of the State.

"Consistently exceeding effluent limitation" means a POTW exceeding the 30 day average limit for biochemical oxygen demand or total suspended solids for at least five days out of each seven day period during a total period of 180 consecutive days.

The following specific requirements shall apply to POTW's. If a spill or major spill occurs, the owner of a POTW shall immediately:

- a. Notify EPD, in person or by telephone, when a spill or major spill occurs in the system.
- b. Report the incident to the local health department(s) for the area affected by the incident. The report at a minimum shall include the following:
  - 1. Date of the spill or major spill;
  - 2. Location and cause of the spill or major spill;
  - 3. Estimated volume discharged and name of receiving waters; and
  - 4. Corrective action taken to mitigate or reduce the adverse effects of the spill or major spill.
- c. Post a notice as close as possible to where the spill or major spill occurred and where the spill entered State waters and also post additional notices along portions of the waterway affected by the incident (i.e. bridge crossings, boat ramps, recreational areas, and other points of public access to the affected waterway). The notice at a minimum shall include the same information required in 11(b)(1-4) above. These notices shall remain in place for a minimum of seven days after the spill or major spill has ceased.
- d. Within 24 hours of becoming aware of a spill or major spill, the owner of a POTW shall report the incident to the local media (television, radio, and print media). The report shall include the same information required in 11(b)(1-4) above.
- e. Within 5 days (of the date of the spill or major spill), the owner of a POTW shall submit to EPD a written report which includes the same information required in 11(b)(1-4) above.
- f. Within 7 days (after the date of a major spill), the owner of a POTW responsible for the major spill, shall publish a notice in the largest legal organ of the County where the incident occurred. The notice shall include the same information required in 11(b)(1-4) above.
- g. The owner of a POTW shall immediately establish a monitoring program of the receiving waters affected by a major spill or by consistently exceeding an effluent limit, with such monitoring being at the expense of the POTW for at least one year. The monitoring program shall include an upstream sampling point as well as sufficient downstream locations to accurately characterize the impact of the major spill or the consistent exceedence of effluent limitations described in the definition of "Consistently exceeding effluent limitation" above. As a minimum, the following parameters shall be monitored in the receiving stream:
  - 1. Dissolved Oxygen;
  - 2. Fecal Coliform Bacteria:
  - 3. pH;
  - 4. Temperature; and
  - 5. Other parameters required by the EPD.

The monitoring and reporting frequency as well as the need to monitor additional parameters, will be determined by EPD. The results of the monitoring will be provided by

the POTW owner to EPD and all downstream public agencies using the affected waters as a source of a public water supply.

h. Within 24 hours of becoming aware of a major spill, the owner of a POTW shall provide notice of a major spill to every county, municipality, or other public agency whose public water supply is within a distance of 20 miles downstream and to any others which could be potentially affected by the major spill.

#### 12. UPSET PROVISION

Provision under 40 CFR 122.41(n)(1)-(4), regarding "Upset" shall be applicable to any civil, criminal, or administrative proceeding brought to enforce this permit.

#### B. RESPONSIBILITIES

#### 1. DUTY TO COMPLY

The permittee must comply with all conditions of this permit. Any permit noncompliance is a violation of the Federal Clean Water Act, State Act, and the State Rules, and is grounds for:

- a. Enforcement action;
- b. Permit termination, revocation and reissuance, or modification; or
- c. Denial of a permit renewal application.

#### 2. NEED TO HALT OR REDUCE ACTIVITY NOT A DEFENSE

It shall not be a defense of the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity to maintain compliance with the conditions of this permit.

#### 3. INSPECTION AND ENTRY

The permittee shall allow the Director of the EPD, the Regional Administrator of EPA, and their authorized representatives, agents, or employees after they present credentials to:

- a. Enter the permittee's premises where a regulated activity or facility is located, or where any records required by this permit are kept;
- b. Review and copy any records required by this permit;
- c. Inspect any facilities, equipment, practices, or operations regulated or required by this permit; and
- d. Sample any substance or parameter at any location.

#### 4. DUTY TO PROVIDE INFORMATION

The permittee shall furnish any information required by the EPD to determine whether cause exists to modify, revoke and reissue, or terminate this permit or to determine compliance with this permit. The permittee shall also furnish the EPD with requested copies of records required by this permit.

# 5. TRANSFER OF OWNERSHIP

A permit may be transferred to another person by a permittee if:

- a. The permittee notifies the Director in writing at least 30 days in advance of the proposed transfer:
- b. An agreement is written containing a specific date for transfer of permit responsibility including acknowledgment that the existing permittee is liable for violations up to that date, and that the new permittee is liable for violations from that date on. This agreement must be submitted to the Director at least 30 days in advance of the proposed transfer; and
- c. The Director does not notify the current permittee and the new permittee within 30 days of EPD intent to modify, revoke and reissue, or terminate the permit. The Director may require that a new application be filed instead of agreeing to the transfer of the permit.

# 6. AVAILABILITY OF REPORTS

Except for data determined to be confidential by the Director of EPD under O.C.G.A. 12-5-26 or by the Regional Administrator of EPA under the Code of Federal Regulations, Title 40, Part 2, all reports prepared to comply with this permit shall be available for public inspection at an EPD office. Effluent data, permit applications, permittees' names and addresses, and permits shall not be considered confidential.

# 7. PERMIT ACTIONS

This permit may be modified, terminated, or revoked and reissued in whole or in part during its term for causes including, but not limited to:

- a. Permit violations:
- b. Obtaining this permit by misrepresentation or by failure to disclose all relevant facts;
- c. Changing any condition that requires either a temporary or permanent reduction or elimination of the permitted discharge;
- d. Changes in effluent characteristics; and
- e. Violations of water quality standards.

The filing of a request by the permittee for permit modification, termination, revocation and reissuance, or notification of planned changes or anticipated noncompliance does not negate any permit condition.

# 8. CIVIL AND CRIMINAL LIABILITY

Nothing in this permit shall be construed to relieve the permittee from civil or criminal penalties for noncompliance.

#### 9. PROPERTY RIGHTS

The issuance of this permit does not convey any property rights of either real or personal property, or any exclusive privileges, nor does it authorize any injury to private property or any invasion of personal rights, or any infringement of Federal, State or local laws or regulations.

#### 10. DUTY TO REAPPLY

The permittee shall submit an application for permit reissuance at least 180 days before the expiration date of this permit. The permittee shall not discharge after the permit expiration date. To receive authorization to discharge beyond the expiration date, the permittee shall submit the information, forms, and fees required by the EPD no later than 180 days before the expiration date.

#### 11. CONTESTED HEARINGS

Any person aggrieved or adversely affected by any action of the Director of the EPD shall petition the Director for a hearing within 30 days of notice of the action.

#### 12. SEVERABILITY

The provisions of this permit are severable. If any permit provision or the application of any permit provision to any circumstance is held invalid, the provision does not affect other circumstances or the remainder of this permit.

#### 13. OTHER INFORMATION

Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report form to the Director, it shall promptly submit such facts or information.

#### 14. PREVIOUS PERMITS

All previous State wastewater permits issued to this facility, whether for construction or operation, are hereby revoked on the effective date of this permit. This action is taken to assure compliance with the Georgia Water Quality Control Act, as amended, and the Federal Clean Water Act, as amended. Receipt of the permit constitutes notice of such action. The conditions, requirements, terms and provisions of this permit authorizing discharge under the National Pollutant Discharge Elimination System govern discharges from this facility.

#### **PART III**

# INDUSTRIAL PRETREATMENT PROGRAM FOR PUBLICLY OWNED TREATMENT WORKS (POTW)

- 1. The permittee may establish and operate an approved industrial pretreatment program.
- 2. If the EPD determines that the permittee is required to develop a local industrial pretreatment program, the permittee will be notified in writing. The permittee shall immediately begin development of an industrial pretreatment program and shall submit it to the EPD for approval no later than one year after the notification.
- 3. During the interim period between determination that a program is needed and approval of the program, all industrial pretreatment permits shall be issued by the EPD.
- 4. The permittee shall notify the EPD of all industrial users connected to the system or proposing to connect to the system from the date of issuance of this permit.
- 5. Implementation of the Pretreatment Program developed by the State can be delegated to the permittee following the fulfillment of requirements detailed in 391-3-6-.09 of the Rules and Regulations for Water Quality Control.